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Abstract The applicability of the Encounter Theory (ET) (the prototype of the
Collision Theory) concepts for widely occurring diffusion assisted irreversible bulk
reaction A + B → C (for example, radical reaction) in dilute solutions taking account
of initial microscopic correlations and force interactions between reactants has been
treated theoretically with modern many-particle method for the derivation of non-
Markovian binary kinetic equations. The method shows that taking into consideration
initial correlations and force interactions leads to the redefinition of the Markovian
rate constant only in the expressions derived earlier. Thus, just as in the reaction
A+ A → C and the reaction A+ B → C neglecting force and initial correlations, the
Modified Encounter Theory (MET), when reduced to equations of a Regular Form,
both extends the time applicability range of ET homogeneous rate equation, and yields
the inhomogeneous equation of the Generalized Encounter Theory (GET). It reveals
macroscopic correlations induced by the encounters in the reservoir of free walks
in full agreement with physical considerations. Time accumulation of macroscopic
correlations obeys the same time law as in the previously considered case neglecting
force interactions. Just the rate of the process will change, according to traditional
redefinition of the steady-state constant of the reaction.
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1 Introduction

Development of diffusion controlled reactions is related to the Smoluchowski works on
coagulation theory in colloid chemistry [1]. Extension of these works to the theory of
chemical reactions in liquid solutions has led to the so-called Smoluchowski approach.
In the frame of this approach the kinetic equations have the form of differential ones
(rate equations) similar to formal chemical kinetics equations with the only differ-
ence that the reaction rate constant is time dependent. Later on, traditional approaches
to the derivation of kinetic equations in the theories of reactions in solutions [2–9]
based on the concepts of independent reactant pairs (“free pairs” [10,11]) confirmed
the results of the Smoluchowski approach. The exact many-particle (with respect to
reactants) substantiation of these theories was performed for the simplest irreversible
reaction using the so-called “target model” [8,9], and at small concentrations—by Wa-
ite using superposition decoupling in hierarchies for Reduced Distribution Functions
[10–13]. However, these approaches turned out to be inapplicable in the investiga-
tion of dynamic processes (determined by the Hamiltonians) and reversible chemical
reactions.

Therefore the Encounter Theory (ET) [14–16] was proposed. It is the prototype of
the Collision Theory (CT) in gases [17–19] adapted for the consideration of physi-
cochemical processes in dilute liquid solutions (solutions with small value of density
parameter). The Encounter Theory based on somewhat different, more general phys-
ical concepts, is more universal from the standpoint of the description of reacting
systems evolution than the Smoluchowski approach. In particular, ET takes account
of non-contact nature of the reaction, it can be applied to reversible and multi-stage
reactions, makes it possible to allow for the Hamiltonian, internal structure, nonsphe-
ricity of reactants, etc. In the specific case of the Smoluchowski problem statement,
ET reproduces its result. The advantage of ET is that the concepts it is based on allows
one to obtain clear physical interpretation of the results.

The applicability of the Collision Theory concepts to reactions in liquid solutions
is based on the fact that in traditional consideration of a solvent dilute solutions resem-
ble a “gas” of reactants dissolved in a homogeneous chemically inert solvent (not in
solution) treated as a continual medium (from the standpoint of molecular dynamics
this corresponds to the limiting case of “over damped” Langevin dynamics, or to the
Langevin dynamics without inertia, i.e., corresponds to the Brownian dynamics meth-
ods). Note that along with such a treatment of a solvent, there exist the approaches
allowing for its molecular structure [20–22]. However, unlike the Collision Theory, ET
allows for the interaction with the medium affecting both the course of the elementary
event, and the character of reactants mobility (the kinematics of “collision”) that is
transformed to random walks [23].

In the framework of ET the reactants are for the most part in the process of “free”
random walks (in the reservoir of free random walks), and the reaction takes place upon
their pair (binary) encounters the duration of which is much less than the mean time
between them. Under such conditions, pair encounters were considered to be inde-
pendent and three and more particles encounters are neglected (just as for collisions
in gases). It means that the effects of the encounters occurring at different moments
of time are uncorrelated, and, therefore, additive. These concepts, as in gases, lead to
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differential kinetic equations (rate equations) differing from formal chemical kinetics
equations based on the kinetic law of mass action only in the time dependence of the
rate constant.

However, the conception of independent pair encounters of reactants in solution
needs consistent substantiation that may be performed only on the basis of many-par-
ticle consideration of the reacting systems. Different many-particle techniques were
proposed in the literature [24–26] but we use the method most closely related to the
Encounter Theory notions. Such a method based on the adaptation of non-station-
ary quantum scattering theory techniques and non-equilibrium statistical mechanics
methods to chemically reacting systems now has become possible [27–34].

This method consists of several steps beginning from the many-particle statement of
the problem to the final derivation of binary kinetic equations. The detailed microscopic
many-particle description of the reacting system and passing to the thermodynamic
limit make it possible to write hierarchies for Reduced Distribution Functions. Fur-
ther derivation of the equations relies on the idea to treat the evolution of the reacting
system as the evolution of space-time correlations in spatial location of reactants. The
obtained hierarchies of equations for correlation patterns require closing on some level.
The simplest method of such a closure is taking into consideration just two-particle
correlations between reactants neglecting all three-particle ones. This approximation
corresponds to the development of the so-called Integral Encounter Theory (IET)
[35,36] and leads to integro-differential kinetic equations. The kernel of this equation
calculated using the reacting pair parameters is the basic kinetic coefficient of the
theory that completely describes the encounter. However, the kinetic equations them-
selves can be employed in a narrow time interval [36–38]. To expand their applicability
in the range of binary description, it is necessary to allow for correlation patterns of
higher order than two-particle ones. Closing of a hierarchy of equations on the level
of three-particle correlation patterns is implemented by extracting binary channels in
the evolution of three-particle correlation patterns; this corresponds to the next step
in the many-particle derivation and the development of the Effective Pair Approxima-
tion (EPA) [28,39]. On the basis of this approximation, discarding the terms beyond
the limits of binary approximation, we derive more general integro-differential binary
equations of the Modified Encounter Theory (MET) [39] valid over the entire time
range of binary description. However, the demerit of this theory is the dependence of
the kinetic coefficient (the kernel) on initial concentrations of reactants that contra-
dict the principles of kinetic theory. Within the accuracy of binary approximation the
kinetic equations of irreversible reactions admit further reduction to the form of the
rate equation (Regular form) that allows direct comparison with the Encounter Theory.
The aim of the present contribution is the application of the developed method for the
derivation of the kinetic equation for the reaction A + B → C with allowance for the
force interaction between reactants.

2 Statement of the problem

For the irreversible reaction under discussion A + B → C (in this particular case) the
non-Markovian (with time dependent reaction rate constant) binary kinetic equation
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is of the same form both in ET, and in Waite-Smoluchowski theories

d[A]t

dt
= d[B]t

dt
= −d[C]t

dt
= −K (t)[A]t [B]t , (2.1)

where [A]t , [B]t and [C]t are concentrations of reactants. K (t) is the non-Markov-
ian rate constant attaining its steady-state value (the Markovian rate constant or the
steady-state constant)

k = lim
t→∞ K (t). (2.2)

In this Markovian version of the theory Eq. (2.1) is transformed into the equation of for-
mal chemical kinetics corresponding to the kinetic law of mass action (corresponding
concentrations are marked by the upper index m)

d[A]m
t

dt
= d[B]m

t

dt
= −d[C]m

t

dt
= −k[A]m

t [B]m
t , (2.3)

to give the familiar kinetics of the bimolecular reaction at hand

[A]m
t = Δn · [A]0 exp (−kΔn t)

[B]0 − [A]0 exp (−kΔn t)
; [B]m

t = Δn · [B]0

[B]0 − [A]0 exp (−kΔn t)
, (2.4)

whereΔn = [B]t −[A]t = [B]m
t −[A]m

t = [B]0−[A]0, and [A]0 and [B]0 are the ini-
tial concentrations of reactants. For definiteness, hereinafter we take that [B]0 ≥ [A]0
(Δn ≥ 0).

In the framework of ET Eqs. (2.1) and (2.3) have a clear physical meaning. The
product of concentrations in the right-hand sides of the equations corresponds to the
approach of uncorrelated particles which are in the process of free random walk in
the bulk, while the kinetic coefficients (rate constants) specify the efficiency of the
encounter of reactants brought close together. Note that the independence of pair
encounters also means the independence of “reservoirs” of free random walks and the
encounters.

In the paper in Ref. [40] we used the described above many-particle method for
the derivation of kinetic equations to analyze the notions of the independence of pair
encounters for the reaction A + B → C . But this investigation was made without
regard to force interaction between reagents (reactants were assumed to be point par-
ticles). This allowed us to concentrate on the study of correlations determined by the
reaction. It has been established that the final kinetic equation written in the Regular
form (as the rate equation) involves an extra term J (t) determined by accumulation
of macroscopic correlations in a free walk “reservoir”

d[A]t

dt
= d[B]t

dt
= −d[C]t

dt
= −K (t)[A]t [B]t + J (t). (2.5)

The appearance of extra inhomogeneous term in the kinetic equation is traditionally
associated with the presence of initial correlations in the system that vanish with time,
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in accordance with the general principles of non-equilibrium statistical mechanics
[11,41–43]. However, the time dependence of the obtained term J (t) in Eq. (2.5) is
different: at the initial moment of J (t = 0) = 0. With time, J (t) reaches its maximum
value, and than decreases to zero. To interpret the obtained source in the concepts of
the Encounter Theory, the kinetic equation (2.5) can be conveniently rewritten as

d[A]t

dt
= d[B]t

dt
= −d[C]t

dt
= −K (t){[A]t [B]t +Πmacro(t)}. (2.6)

The presence of the correlatorΠmacro(t)means that chemical correlations arising on
the encounters of reactants are transferred to the “reservoir” of free random walks,
and in the general case pair encounters of reactants in solution are dependent. Accu-
mulation of the above correlations occurs at the times of the order of time between
the encounters, and this corresponds to macroscopic time scales of chemical reaction
course. That is why such correlations should be treated as macroscopic. The above
mentioned phenomenon (absent in gas reactions) is determined by the fact that, unlike
collisions in gases, the encounter of reactants in solution consists of re-contacts (cage
effect) between which the reactants can move apart for macroscopic distances and
interact with reactants in the bulk. Taking account of such dependence pair encounters
leads to the Generalized Encounter Theory (GET) [40,44].

Inclusion in the consideration the force interactions between reactants (and reaction
products) makes it necessary to consider the appearance of additional force correla-
tions on the encounters of particles in solution. Manifestation of such interactions in
the framework of ET (dealing solely with independent pair encounters of reactants)
is evident, and corresponds to the familiar recipe for its inclusion in the description
of the motion of reactants in the encountering reacting pair [1,11] which leads to the
change in the rate constant K (t) in Eqs. (2.1)–(2.6). However, as for inhomogeneous
sources in GET kinetic equations (2.5)–(2.6), they are intimately connected with the
presence of three-particle correlations in the reaction system under discussion, thus
investigation of the force interaction influence of reactants (both between each other
and with the products in the bulk) is a separate problem the solution of which is the
subject of the present contribution. It is essential that in calculating inhomogeneous
sources one should take into account only the effects that provide corrections to the
kinetics, of the order of contributions from binary encounters of reactants in solution
allowed for in ET.

Consistent consideration of the force interaction requires allowing for initial cor-
relations of the Boltzmann type [45]. However, here we shall consider the presence
of arbitrary initial correlations, since no radical change in the many-particle approach
is needed for this purpose [44]. Note that taking into account the force interaction
(and arbitrary initial correlations) in the context of the Encounter Theory based on
the conception of independent pair encounters is evident. To this end, it should be
allowed for just in the reacting pair of the encountering particles A and B. The influ-
ence of the interaction of the reacting pair AB with other particles (including products
C) is insignificant, since taking it into consideration is beyond the limits of making
allowance for two-particles only. Of course, as the density parameter increases (in this
case ET is inapplicable) such a consideration becomes essential, and this is confirmed
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by numerical calculations available in the literature [20,46–48]. However, even at
small density parameters, ignoring the above force interactions in the more general
GET theory that considers the dependence of pair encounters of reactants in solution
determined by the contribution of three-particle correlations into the kinetics is not
so apparent. In this case the interaction of reactants with the product can affect the
accumulation of macroscopic correlations. Investigation of the role of this effects is
the main subject of the present contribution.

In the third section we give the many-particle description of the considered reacting
system A + B → C . Section 4 presents the Integral Encounter Theory (IET) that is
the first step in the derivation of kinetic equations. In the fifth section the Effective
Pair Approximation (EPA) equations are derived, and the matrix kinetic equation nec-
essary for the development of the binary theory is formed. The non-Markovian binary
Modified Encounter Theory (MET) and the reduction of non-Markovian MET equa-
tions to their Regular Form (RF) corresponding to the Generalized Encounter Theory
(GET) are constructed in Sect. 6. Section 7 deals with the time behaviour of the corre-
lations between reactant encounters and reaction kinetics. The results are summarized
in Conclusion. The intermediate calculations are given in Appendices.

3 Many-particle description of the reacting system

3.1 Many-particle model

For many-particle description of the reacting system, first it is necessary to determine
its microscopic parameters. As in [40,44], free motion of non-interacting (point) reac-
tants in continual medium is described by the Markovian process of random walks
defined by the motion operator (in the general case by the integral operator) L̂α , where
α denotes the reactants. The force interaction between two reactants is determined by
the corresponding potential energy of the pair interaction of reactants, and is specified
by the operators of the force interaction L̂ ′

αβ between α and β reactants that satisfy
the condition of the preservation of the number of particles

∫
dα L̂α = 0 ;

∫
dαdβ L̂ ′

αβ = 0. (3.1)

Here α and β denote space coordinates rα and rβ of α and β reactants.
For example, for continual diffusion of reactants these operators are of the form

L̂α = DαΔα ; L̂ ′
αβ = Dα

kB T
∇α

(∇αUαβ
)+ Dβ

kB T
∇β

(∇βUαβ
)
, (3.2)

where Dα is the diffusion coefficient of the reactant under consideration, Δα is the
Laplacian, ∇α is the nabla-operator of α reactant, kB is the Boltzmann constant, T is
the absolute temperature.

The elementary rate of the reaction is described by three-center rate R(Ck |Ai , B j )

depending on the coordinates of the initial reactants Ai , B j and the final product Ck .
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Since the solution is assumed to be spatially homogeneous, the elementary rate has a
shift symmetry, i.e., for arbitrary vector r the equality holds

R(Ck |Ai , B j ) = R(Ck + r|Ai + r, B j + r). (3.3)

Along with the rate R(Ck |Ai , B j ), we introduce the elementary event rate

w(Ai − B j ) =
∫

dCk R(Ck |Ai , B j ), (3.4)

that defines the complete vanishing rate of the initial reactants A and B no matter
where the product C is formed.

In further mathematical description (as in Refs. [40,44]), we shall use the extended
time interval −∞ < t < ∞. At t < 0 the values of all functions are taken equal
to zero, and at t > 0 these values coincide with corresponding physical quantities.
Thus the functions at extended time interval are obtained by multiplication of original
functions (defined on the ordinary time interval 0 < t < ∞) by the stepwise Heav-
iside function θ(t). So differential equations for such functions do not require that
the initial conditions be stated. They are taken into account by introducing δ-func-
tional source in the right-hand side of appropriate differential equation. This makes
it possible to consider space and time variables on equal terms which is necessary
for the introduction of integral operators acting on space-time variables that simplify
essentially the intermediate calculations. For simplicity, we denote the time derivative
on the extended time interval as ∂t . If the kernel of some integral operator is time
invariant, then time dependence is introduced by multiplication of this value by the
δ(t) function.

Thus the elementary event of chemical conversion may be described by the integral
operator R̂(k|i, j) defined by the kernel

R(k|i, j)(Ck, t |Ai , B j , t0) = R(Ck |Ai , B j )δ(t − t0). (3.5)

The integral operator V̂ (i, j) describing chemical interaction of reactants is defined by
the kernel

V (i, j)(Ai , B j , t |A0i , B0 j , t0) = −w(Ai − B j )δ(Ai − A0i )δ(B j − B0 j )δ(t − t0).

(3.6)

The introduced quantities enable one to perform a many-particle description of the
reacting system A + B → C . For this purpose, let the total number of A and C reac-
tants be equal to N , and the difference in the number of A and B reactants be M . In
the course of the reaction the numbers M and N remain time constant. At the instant
of time t the reacting system is described by a set of distribution functions depending
on the number L of A reactants{
Φ(0)(B M ,C N , t); . . . ;Φ(L)(AL , B M+L ,C N−L , t); . . . ;Φ(N )(AN , B M+N , t)

}
.

(3.7)
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Each functionΦ(L)(AL , B M+L ,C N−L , t) is the density of the probability that by the
moment of time t L identical A particles, M + L identical B particles, and N − L
identical C particles will be found at the points AL ≡ {A1, A2, . . . , AL}, B M+L ≡
{B1, B2, . . . , BM+L}, and C N−L ≡ {C1,C2, . . . ,CN−L} of the macroscopic volume
V , respectively (vectors with such components form the so-called Fock space [49]).

Each distribution function is normalized to the probability p(L)(t) to find the system
in the state (L)

∫
d AL

L!
d B M+L

(M + L)!
dC N−L

(N − L)!Φ
(L)(AL , B M+L ,C N−L , t) = p(L)(t). (3.8)

The set of this probabilities is normalized to unity

N∑
L=0

p(L)(t) = 1. (3.9)

The distribution functionΦ(L) obeys the Liouville equation which is the balance equa-
tion in the Fock space. This equation is a basis for consistent many-particle description.
Further it will serve to derive equations for Reduced Distribution Functions and Corre-
lation Patterns. So the Liouville equation on the extended time interval −∞ < t < ∞
takes the form

(
∂t −

L∑
i=1

L̂ Ai −
M+L∑
j=1

L̂ B j −
N−L∑
k=1

L̂Ck −
L ,N−L∑
i,k=1

L̂ ′
Ai Ck

−
L ,M+L∑
i, j=1

L̂ ′
Ai B j

−
M+L ,N−L∑

j,k=1

L̂ ′
B j Ck

−1

2

L∑
i,i ′=1
i �=i ′

L̂ ′
Ai Ai ′ − 1

2

M+L∑
j, j ′=1
j �= j ′

L̂ ′
B j B j ′ − 1

2

N−L∑
k,k′=1
k �=k′

L̂ ′
Ck Ck′

)
Φ(L)(AL , B M+L ,C N−L , t)

= δ(t)Φ(L)0 (AL , B M+L ,C N−L )+
L ,M+L∑
i, j=1
i �= j

V̂ (i, j)Φ(L)(AL , B M+L ,C N−L , t)

+
N−L∑
k=1

R̂(k|L+1,M+L+1)Φ(L+1)(AL+1, B M+L+1,C N−L/Ck , t), (3.10)

where C N−L/Ck denotes the set of coordinates C N−L except the coordinate Ck . The
left-hand side of this equation describes random motion of reactants in the medium
with allowance for their force interaction. The first term in the right-hand side propor-
tional to δ(t) takes into consideration the initial condition. The second term after the
equality sign describes the escape from the state (L) due to the reaction, and the third
term—coming from the state (L + 1).

3.2 Reduced Distribution Functions and correlation patterns

Reduced Distribution Functions (RDF) are defined by the relation [42,43]
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ϕp,q,r (A
p, Bq ,Cr , t)

= T − lim
∞∑

L=0

∫
d A p+1 . . . d AL d Bq+1 . . . d BM+L dCr+1 . . . dCN−L

(L − p)!(M + L − q)!(N − L − r)! Φ(L)(AL , B M+L ,C N−L , t).

(3.11)

where T − lim denotes the thermodynamic limit. For instance, local concentrations
of reactants coincide with RDF of the first order

n A(A, t) = ϕ1,0,0(A, t), nB(B, t) = ϕ0,1,0(B, t), nC (C, t) = ϕ0,0,1(C, t).

(3.12)

The mean concentration of A reactants in solution is expressed in terms of local con-
centration in the familiar fashion

[A]t = lim
v→∞

∫

v

d A

v
n A(A, t). (3.13)

Here the symbol v under the integral means that integration is performed over the
volume v.

With definition (3.11) and properties (3.1), Eq. (3.10) gives the infinite hierarchies
(since in the thermodynamic limit the system contains the infinite number of reactants)
wherein the RDF evolution of the lower order is related to RDF evolution of the higher
order. Thus integration procedure (3.11) of Eq. (3.10), in view of property (3.1), yields

(
∂t −

p∑
i=1

L̂ Ai −
q∑

j=1

L̂ B j −
r∑

k=1

L̂Ck −
p,r∑

i,k=1

L̂ ′
Ai Ck

−
p,q∑

i, j=1

L̂ ′
Ai B j

−
q,r∑

j,k=1

L̂ ′
B j Ck

−1

2

p∑
i,i ′=1
i �=i ′

L̂ ′
Ai Ai ′ − 1

2

q∑
j, j ′=1
j �= j ′

L̂ ′
B j B j ′ − 1

2

r∑
k,k′=1
k �=k′

L̂ ′
Ck Ck′

)
ϕp,q,r (A

p, Bq ,Cr , t)

−
∫

d Ap+1

⎛
⎝

p∑
i=1

L̂ ′
Ai Ap+1

+
q∑

j=1

L̂ ′
Ap+1 B j

+
r∑

k=1

L̂ ′
Ap+1Ck

⎞
⎠ϕp+1,q,r (A

p+1, Bq ,Cr , t)

−
∫

d Bq+1

⎛
⎝

p∑
i=1

L̂ ′
Ai Bq+1

+
q∑

j=1

L̂ ′
B j Bq+1

+
r∑

k=1

L̂ ′
Bq+1Ck

⎞
⎠ϕp,q+1,r (A

p, Bq+1,Cr , t)

−
∫

dCr+1

⎛
⎝

p∑
i=1

L̂ ′
Ai Cr+1

+
q∑

j=1

L̂ ′
B j Cr+1

+
r∑

k=1

L̂ ′
Ck Cr+1

⎞
⎠ϕp,q,r+1(A

p, Bq ,Cr+1, t)

= δ(t)ϕ0
p,q,r (A

p, Bq ,Cr )+
p,q∑

i, j=1
i �= j

V̂ (i, j)ϕp,q,r (A
p, Bq ,Cr , t)

+
p∑

i=1

∫
d Bq+1V̂ (i,q+1)ϕp,q+1,r (A

p, Bq+1,Cr , t)
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+
q∑

j=1

∫
d Ap+1V̂ (p+1, j)ϕp+1,q,r (A

p+1, Bq ,Cr , t)

+
r∑

k=1

R̂(k|p+1,r+1)ϕp+1,q+1,r−1(A
p+1, Bq+1,Cr/Ck , t). (3.14)

Here ϕ0
p,q,r (A

p, Bq ,Cr ) = ϕp,q,r (Ap, Bq ,Cr , t = 0).
As an example consider the equation for the lower order RDF

(∂t − L̂ A1)ϕ1,0,0(A1, t) = δ(t)ϕ0
1,0,0(A1)+

∫
d B1

(
V̂ (1,1)+L̂ ′

A1 B1

)
ϕ1,1,0(A1, B1, t)

+
∫

dC1 L̂ ′
A1C1

ϕ1,0,1(A1,C1, t)+
∫

d A2 L̂ ′
A1 A2

ϕ2,0,0(A1, A2, t). (3.15)

Accumulation of C product and the decay of B reactant are obviously related to A
reactant decay by balance relation of the number of particles. Thus further we shall
confine the discussion to the kinetics of A reactant.

The next step is to invoke Prigogine’s idea to treat the evolution of RDFs infi-
nite hierarchy as correlation dynamics [50]. Correlation Patterns (CP) are introduced
as the terms of the well-known group expansion of Reduced Distribution Functions
[28,42,43,50,51]. For example, for some lower order RDFs this expansion is

ϕ1,0,0(A1, t) = π1,0,0(A1, t),

ϕ0,1,0(B1, t) = π0,1,0(B1, t),

ϕ0,0,1(C1, t) = π0,0,1(C1, t),

ϕ2,0,0(A1, A2, t) = π2,0,0(A1\A2, t)+ π2,0,0(A1, A2, t). (3.16)

Each CP involving the division of reactants coordinates into several groups by back
slash “\” is uncorrelated with respect to these groups, and may be factorized. For
example,

π2,0,0(A1\A2, t) = π1,0,0(A1, t)π1,0,0(A2, t),

π1,1,1(A1, B1\C1, t) = π1,1,0(A1, B1, t)π0,0,1(C1, t). (3.17)

So in view of Eqs. (3.12), (3.15) gives the relation between local concentration and
two-particle CPs

(∂t − L̂ A1)n A(A1, t) = δ(t)n0
A(A1)

+
∫

d B1

(
V̂ (1,1) + L̂ ′

A1 B1

) [
π1,1,0(A1, B1, t)+ n A(A1, t)nB(B1, t)

]

+
∫

dC1 L̂ ′
A1C1

[
π1,0,1(A1,C1, t)+ n A(A1, t)nC (C1, t)

]

+
∫

d A2 L̂ ′
A1 A2

[
π2,0,0(A1, A2, t)+ n A(A1, t)n A(A2, t)

]
. (3.18)
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Note that the presence of the force interaction between reactants result in additional
terms in Eq. (3.18) absent in paper [40]. In particular, the interaction of initial reactants
with the reaction product is observed.

As is seen, to close Eq. (3.18) and thus to derive the desired kinetic equation, we
need to know two-particle correlation patternsπ1,1,0(A1, B1, t), π1,0,1(A1,C1, t), and
π2,0,0(A1, A2, t). Equations for them are derived in the same manner, and are given
in “Appendix A”. These equations may be solved using some approximations that
make it possible to break an infinite hierarchy of equations for correlation patterns on
a definite level.

4 The Integral Encounter Theory

4.1 General description

The simplest way to close CPs hierarchy which gives the Integral Encounter Theory
(IET) kinetic equation is to neglect the contributions of any three-particle CPs into the
evolution of two-particle CPs [28,29,40,44]. Note that in this case equations for CPs
π1,1,0(A1, B1, t), π1,0,1(A1,C1, t), and π2,0,0(A1, A2, t) (see Eqs. (A.1), (A.2), and
(A.3) in “Appendix A” neglecting all three-particle CPs) are closed, and the reaction
is determined just by the evolution of π1,1,0(A1, B1, t)

(
∂t − L̂ A1 − L̂ B1 −

(
L̂ ′

A1 B1
+ V̂ (1,1)

))
π1,1,0(A1, B1, t)

= δ(t)π0
1,1,0(A1, B1)+

(
L̂ ′

A1 B1
+ V̂ (1,1)

)
n A(A1, t)nB(B1, t).

(4.1)

The difference between the above equation and similar equation from paper [40] is
that it involves the terms responsible for initial correlations and the force interaction
between reactants, as it was in the case of the reaction A + A → C [44]. Note that
chemical and force interactions appear in Eq. (4.1) in an additive way, thus force and
chemical interactions can be considered on equal terms. The solution of Eq. (4.1) has
the form

π1,1,0(A1, B1, t)Ĝ A1 B1

[(
V̂ (1,1) + L̂ ′

A1 B1

)
n A(A1, t)nB(B1, t)+ δ(t)π0

1,1,0(A1, B1)
]
,

(4.2)

and is of the same form for π1,0,1(A1,C1, t) and π2,0,0(A1, A2, t) appearing in Eq.
(3.18)

π1,0,1(A1,C1, t) = Ĝ0
A1C1

[
δ(t)π0

1,0,1(A1,C1)+ L̂ ′
A1C1

n A(A1, t)nC (C1, t)
]
,

π2,0,0(A1, A2, t) = Ĝ0
A1 A2

[
δ(t)π0

2,0,0(A1, A2)+ L̂ ′
A1 A2

n A(A1, t)n A(A2, t)
]
,

(4.3)

where the propagator kernels of AB, AC , and AA pairs satisfy the equations

(
∂t − L̂ A1 − L̂ B1 −

(
L̂ ′

A1 B1
+ V̂ (1,1)

))
G A1 B1(A1, B1, t |A01, B01, t0)
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= δ(A1 − A01)δ(B1 − B01)δ(t − t0),(
∂t − L̂ A1 − L̂C1 − L̂ ′

A1C1

)
G0

A1C1
(A1,C1, t |A01,C01, t0)

= δ(A1 − A01)δ(C1 − C01)δ(t − t0),(
∂t − L̂ A1 − L̂ A2 − L̂ ′

A2 A2

)
G0

A1 A2
(A1, A2, t |A01, A02, t0)

= δ(A1 − A01)δ(A2 − A02)δ(t − t0). (4.4)

The upper index “0” denotes the propagator of the pair in which chemical interaction
is absent.

To develop the theory by analogy with papers [40,44], we introduce two-particle
T -operators T̂Ai B j , T̂ 0

Ai Ck
, and T̂ 0

Ai A j
of the pairs AB, AC , and AA, respectively, that

are defined by the equalities

T̂Ai B j =
(

V̂ (i, j) + L̂ ′
Ai B j

)
+
(

V̂ (i, j) + L̂ ′
Ai B j

)
Ĝ Ai B j

(
V̂ (i, j) + L̂ ′

Ai B j

)
,

T̂ 0
Ai Ck

= L̂ ′
Ai Ck

+ L̂ ′
Ai Ck

Ĝ0
Ai Ck

L̂ ′
Ai Ck

,

T̂ 0
Ai A j

= L̂ ′
Ai A j

+ L̂ ′
Ai A j

Ĝ0
Ai A j

L̂ ′
Ai A j

, (4.5)

and similar to that in quantum scattering theory [52]. We call the T -operator T̂AB of
the pair AB expressed in terms of the sum of force and reaction interactions the ulti-
mate T -operator. Other T -operators defined solely in terms of force interactions will
be called force T -operators, they are marked off by the upper index “0”. T -operators
are important characteristics of the pairs of reactants and completely describe their
evolution.

For T -operators the useful relations are known [53,54]

(
V̂ (i, j) + L̂ ′

Ai B j

)
Ĝ Ai B j = T̂Ai B j Ĝ

00
Ai B j

; L̂ ′
Ai Ck

Ĝ0
Ai Ck

= T̂ 0
Ai Ck

Ĝ00
Ai Ck

,

L̂ ′
Ai A j

Ĝ0
Ai A j

= T̂ 0
Ai A j

Ĝ00
Ai A j

, (4.6)

where Ĝ00
Ai B j

, Ĝ00
Ai Ck

, and Ĝ00
Ai A j

are the propagators of the pairs AB, AC , and AA,
respectively, in the absence of any interactions between reactants in the pairs (see Eq.
(4.4) at L̂ ′

αβ = V̂ (i, j) = 0). Thus the given propagators define the motion of point
non-interacting reactants.

Substituting solutions (4.2) and (4.3) in Eq. (3.18) yields the desired kinetic equa-
tion of IET

(
∂t − L̂ A1

)
n A(A1, t) = δ(t)n0

A +
∫

d B1 T̂A1 B1 n A(A1, t)nB(B1, t)

+
∫

d B1 T̂A1 B1 Ĝ00
A1 B1

δ(t)π0
1,1,0(A1, B1)

+
∫

dC1 T̂ 0
A1C1

n A(A1, t)nC (C1, t)
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+
∫

dC1 T̂ 0
A1C1

Ĝ00
A1C1

δ(t)π0
1,0,1(A1,C1)

+
∫

d A2 T̂ 0
A1 A2

n A(A1, t)n A(A2, t)+
∫

d A2 T̂ 0
A1 A2

Ĝ00
A1 A2

δ(t)π0
2,0,0(A1, A2).

(4.7)

The above hierarchy closure (the averaged t-matrix approximation) is widely
employed to describe various bimolecular processes in the condensed phase. It is
the analog of the non-equilibrium statistical mechanics approach to the derivation of
binary equations which is based on the simplification of the mass operator of kinetic
integro-differential equations by way of expansion into a series in concentrations of
reactants and retention of the first non-vanishing term. This ensures taking into account
just a part of the effect of binary encounters of reactants in solution. That is why IET
is the simplest non-Markovian binary theory which, however, may only be applied in
a narrow time interval (as compared to the binary description).

In full agreement with the general kinetic theory principles [42,43], the obtained
binary kinetic equation (4.7) is an inhomogeneous integro-differential equation. The
terms in the right-hand side of the equation the integrands of which are proportional
to the product of concentrations define the contributions into local concentration evo-
lution from binary encounters of the corresponding reactants in solution. These terms
are commonly called collision integrals. Note that in the context of IET consideration
of the force interaction of reactants results in that the collision integral of the reaction
pair (the second term in (4.7)) involves ultimate T -operator (4.5) instead of reaction
T -operator [40]. Besides, In contrast to paper Ref. [40], taking account of the force
interaction leads to the appearance of additional terms (the fourth and the sixth terms)
determined by the encounters of chemically non-reacting reactants.

Inhomogeneous sources consisting of the third, the fifth, and the seventh terms
describe the contributions into local concentration evolution made by initial correla-
tions appearing in the system. Thus, unlike IET equation given in [40] (neglect of force
interaction and initial correlations), Eq. (4.7) involves additional terms determined by
the force interaction and initial correlations. So in the general case of inhomogeneous
reacting systems the force interaction (including that between A reactant and the reac-
tion product C) affects the reaction kinetics even in the framework of IET.

4.2 Spatially homogeneous systems

However, for spatially homogeneous systems the obtained kinetic equation (4.7) is
simplified. All spatial functions depend solely on the relative position of reactants,
and local concentrations of reactants (3.12) coincide with the mean concentration
defined by relation (3.13) (n A(A, t) = [A]t ). So note that for spatially homogeneous
systems one can change to relative coordinates r in any pair of reactants. For instance,
for the pair AB with the coordinates of reactants A1 and B1 the relative position vector
is r = A1 − B1. This is done by the introduction of the projection operator Π̂ into the
space of relative coordinates using the identity
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∫
d A1 d B1 . . . =

∫
dr
∫

d A1 d B1 δ(r − (A1 − B1)) . . . =
∫

dr Π̂ . . . . (4.8)

The use of relative coordinates will be convenient in the next sections. At this stage
we shall still employ the laboratory system of coordinates.

Since the T -operator is the renormalized interaction operator (see Eq. (4.5)), the
terms in the right-hand side of kinetic equation (4.7), involving the force T -operators
are equal to zero due to properties (3.1). So for spatial homogeneous systems IET
kinetic equation reduces to

∂t [A]t = δ(t)[A]0 +
∫

d B1 T̂A1 B1 [A]t [B]t

+
∫

d B1 T̂A1 B1 Ĝ00
A1 B1

δ(t)π0
1,1,0(A1 − B1), (4.9)

In kinetic equation (4.9) both the collision integral and the inhomogeneous source
depend only on the evolution of the reaction pair AB. Thus for spatially homoge-
neous reacting systems in IET the evolution of concentration of reactants does not
depend on the encounters of A with C and A with A (though in the general case such
encounters can affect essentially the trajectories of reactants in solution due to the
force interaction), and on the initial correlations that may take place between them.

To describe initial correlations, the following representation may be used [30]

π0
1,1,0(A1 − B1) = [A]0[B]0(p

T (A1 − B1)− 1), (4.10)

where pT (A1 − B1) is the initial distribution in the reaction pair

pT (A1 − B1) = ϕ(A1 − B1) exp

(
−U (A1 − B1)

kT

)
. (4.11)

Here the function ϕ(A1 − B1) describes initial distribution of point reactants, while
the factor exp (−U (A1 − B1)/(kT )) is responsible for their force interaction. In the
present contribution we shall take that the scale of initial correlations π0

1,1,0(A1 − B1)

and that of the pair energy of force interaction U (A1 − B1) are microscopic quantities.
Separating out the explicit time dependence in kinetic equation (4.9), we have the

kinetic equation in familiar form

∂t [A]t = δ(t)[A]0 −
t∫

−0

dt0Σ
e
0 (t − t0)[A]t0 [B]t0 + J I ET

init (t), (4.12)

where the kernel of this equation (the memory function) is defined through the com-
plete evolution of reaction pair including the force interaction. It is defined as the
averaged T -operator

Σe
0 (t − t0) = −

∫
d B1 TA1 B1(A1, B1, t − t0|A01, B01, 0)d A01d B01. (4.13)
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As the T -operator is the time difference function, the memory function also exhibits
this property.

The inhomogeneous source is of the form

J I ET
init (t) =

∫
d B1 T̂A1 B1 Ĝ00

A1 B1
δ(t)π0

1,1,0(A1 − B1). (4.14)

According to paper [44], the derived kinetic equation (4.12) may be reduced to a
homogeneous equation consistent with the Encounter Theory concepts. Using expres-
sion (4.10) for initial correlations, rewrite the inhomogeneous term as

J I ET
init (t) = [A]0[B]0 (K0(t)− K (t)) . (4.15)

The value K0(t) is defined by the relation

K0(t) ≡
t∫

−0

dτ Σe
0 (τ )

= −
t∫

−0

dτ
∫

d B1d A01d B01 TA1 B1(A1, B1, τ |A01, B01, 0)

= −
∫

d B1 T̂A1 B1 Ĝ00
A1 B1

δ(t)1(A1 − B1) (4.16)

The last equality in Eq. (4.16) is obtained in view of the fact that the unit function
1(A1 − B1) is a static contour for the propagator Ĝ00

A1 B1
(the equilibrium distribution

for the system the evolution of which is described by this propagator), i.e.,

Ĝ00
A1 B1

δ(t)1(A1 − B1) = θ(t)1(A1 − B1). (4.17)

Just as the value K0(t) (4.16), the value K (t) is defined by the relation

K (t) ≡ −
∫

d B1 T̂A1 B1 Ĝ00
A1 B1

δ(t)pT (A1 − B1). (4.18)

The introduced quantity differs from K0(t) only in the function of initial spatial distri-
bution of reactants in the pair AB. The difference of this function pT (A1− B1) in K (t)
from unity 1(A1 − B1) specifies the initial correlations in the pair AB. So it is easily
seen that in the absence of initial correlations K (t) = K0(t), and inhomogeneous term
(4.15) goes to zero.

Just as the identity in Eq. (4.16), the quantity K (t) may be represented as a time
integral of the function Σe(t) defined by the equality

Σe(t) = ∂t K (t). (4.19)
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With t → ∞ both functions K0(t) and K (t) reach the same limit, thus, in full
agreement with the familiar statement concerning the decrease of initial correlations
on the encounters of reactants in solution, the inhomogeneous term goes to zero. This
limit corresponding, as shown below, to the Markovian rate constant (2.2) is defined
taking into account the force interaction in reacting pair as

k = −
∫

d B1d A01d B01T s
A1 B1

(A1, B1|A01, B01), (4.20)

where T s
A1 B1

(A1, B1|A01, B01) is the kernel of stationary T -perator

T̂ s
A1 B1

=
∞∫

−0

dt T̂A1 B1(t) = lim
s→0

T̂ L
A1 B1

(s). (4.21)

Hereinafter the upper index L denotes the Laplace transform of the quantity depending
on the Laplace variable s. The given limit for the quantity K (t) is obtained using the
mixing principle [53]

lim
t→∞ Ĝ00

A1 B1
δ(t)ψT (A1 − B1) = θ(t)1(A1 − B1), (4.22)

whereψT (A1 − B1) is an arbitrary spatial distribution function in the thermodynamic
limit.

To get the desired values of the memory function and inhomogeneous term of in-
tegro-differential kinetic equations, we used, according to Eqs. (4.16) and (4.18), the
ultimate T -operator (defined in Eq. (4.5)) involving both chemical and force interaction
on equal terms. This shows that chemical reaction kinetics is affected by accumulation
of chemical and force correlations of the system of interacting reactants in formally
the same fashion. The ultimate T -operator formalism may be identically transformed
into the reaction T -operator one more usual for the reader. The method is similar to
that described in detail in paper [44]. As in [44], initial correlations in pairs may be
treated as incomplete pair encounters of reactants, and taken into consideration in the
redefinition of the memory function Σe(τ ) of the homogeneous integro-differential
equation

∂t [A]t = δ(t)[A]0 −
t∫

−0

dt0Σ
e(t − t0)[A]t0 [B]t0 . (4.23)

As in [40] and [44], using the point encounter approximation [27,36]

Σe
0 (t) = Σe(t) = kδ(t) , k =

∞∫

−0

dt Σe
0 (t) =

∞∫

−0

dt Σe(t). (4.24)
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we easily show that in IET narrow time interval the non-Markovian kinetic equations
(4.12) and (4.23) reduce to the Markovian kinetic equation (2.3) corresponding to the
kinetic law of mass action of formal chemical kinetics. Thus the limiting value k of the
quantities K0(t) and K (t) introduced by expression (4.20) is the Markovian (steady-
state) rate constant, and the quantities themselves are non-Markovian rate constants
in appropriate differential binary kinetic equations of the Encounter Theory

∂t [A]t = δ(t)[A]0 − K0(t)[A]t [B]t + J I ET
init (t),

∂t [A]t = δ(t)[A]0 − K (t)[A]t [B]t , (4.25)

where the inhomogeneous term is the same (see Eq. (4.15)) as in the corresponding
integro-differential IET equation. So in IET making allowance for the force interac-
tion between reactants (as well as for the initial correlations including those asso-
ciated solely with the presence of the force interaction between A and B reactants
(ϕ(A1 − B1) = 1)) reduces just to traditional redefinition of rate constants K (t) or
K0(t) (at pT (A − B) = 1). It is of interest that the presence of the force interaction
between the initial reactants and the reaction product C does not show itself at all in
IET kinetics of homogeneous systems.

5 The effective pair approximation

5.1 Equations for two-particle CP in EPA

Extending the time validity range of kinetic equations requires that hierarchies be
closed on a higher level; this leads us to the evolution of effective pairs the exam-
ination of which forms the basis of some currently existing theories of reactions in
solutions such as Self-Consistent Relaxation Time Approximation (SCRTA) [55]. It is
able to describe both the binary kinetics of some types of reactions, and its fluctuation
tails, though, generally speaking, this theory is not a binary one.

The Effective Pair Approximation (EPA) corresponds to extracting the contribu-
tions of binary channels (two-particle correlations) into the evolution of three-particle
completely correlated patterns (see “Appendix B”). Thus, in contrast to IET, this
approximation does not ignore three-particle correlations completely but decouples
them to extract the evolution of two-particle and one-particle correlations, just as
the well-known superposition decoupling [56]. However, close similarity of channel
extraction and superposition decoupling takes place only for the simplest reaction
A + B → C + B in spatially homogeneous reacting systems. Any complication of
the system makes the superposition approximation unsuitable [57,58] and essentially
different from EPA. For the reaction under study the above channel extraction gives
the equation for two-particle correlation pattern π1,1,0(A1, B1, t) (see “Appendix B”)

(
∂t − L̂ A1 − L̂ B1 − L̂ ′

A1 B1
− V̂ (1,1)

)
π1,1,0(A1, B1, t)

= δ(t)π0
1,1,0(A1, B1)+

(
L̂ ′

A1 B1
+ V̂ (1,1)

)
ϕ1,0,0(A1, t)ϕ0,1,0(B1, t)
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+
∫

d A2
̂

[
TA2 B1 G0

A1

] [
n A(A2, t)π1,1,0(A1, B1, t)+ nB(B1, t)π2,0,0(A1, A2, t)

]

+
∫

d A2
̂

[
T 0

A1 A2
G0

B1

] [
n A(A1, t)π1,1,0(A2, B1, t)+ n A(A2, t)π1,1,0(A1, B1, t)

]

+
∫

d B2
̂

[
TA1 B2 G0

B1

] [
n A(A1, t)π0,2,0(B1, B2, t)+ nB(B2, t)π1,1,0(A1, B1, t)

]

+
∫

d B2
̂

[
T 0

B1 B2
G0

A1

] [
nB(B1, t)π1,1,0(A1, B2, t)+ nB(B2, t)π1,1,0(A1, B1, t)

]

+
∫

dC1
̂

[
T 0

A1C1
G0

B1

] [
n A(A1, t)π0,1,1(B1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]

+
∫

dC1
̂

[
T 0

B1C1
G0

A1

] [
nB(B1, t)π1,0,1(A1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]
,

(5.1)

where G0
α is the kernel of one-particle free propagator of α reactant that satisfies the

equation

(
∂t − L̂α

)
G0
α(α, t |α0, t0) = δ(α − α0)δ(t − t0). (5.2)

The force T -operators T 0
B1C1

and T 0
B1 B2

are defined by analogy with T -operators

T 0
A1C1

and T 0
A1 A2

(see Eq. (4.5))

T̂ 0
Bi Ck

= L̂ ′
Bi Ck

+ L̂ ′
Bi Ck

Ĝ0
Bi Ck

L̂ ′
Bi Ck

,

T̂ 0
Bi B j

= L̂ ′
Bi B j

+ L̂ ′
Bi B j

Ĝ0
Bi B j

L̂ ′
Bi B j

.
(5.3)

The propagator kernels of the pairs Bi Ck and Bi B j are defined by the equations

(
∂t − L̂ Bi − L̂Ck − L̂ ′

Bi Ck

)
G0

Bi Ck
(Bi ,Ck , t |B0i ,C0k , t0) = δ(Bi − B0i )δ(Ck − C0k )δ(t − t0),(

∂t − L̂ Bi − L̂ B j − L̂ ′
Bi B j

)
G0

Bi B j
(Bi , B j , t |B0i , B0 j , t0) = δ(Bi − B0i )δ(B j − B0 j )δ(t − t0).

(5.4)

Equations for other two-particle correlation patterns in EPA necessary for Eq. (5.1)
closure may be derived in a similar way as it is shown in “Appendix B”.

The appearance of integral terms in Eq. (5.1) makes the theory at hand different
from IET, and extends the applicability of kinetic equations to the range of macroscopic
time scales. That is why, unlike Eq. (4.7) of general IET, calculations of additional
terms also containing T -operators must be done for rather large times.

Now we pass to spatially homogeneous systems. In this case all spatial functions
depend solely on the relative position of reactants, and local concentrations of reactants
(3.12) coincide with the mean concentration defined by relation (3.13) (n A(A, t) ⇒
[A]t , nB(B, t) ⇒ [B]t ). This allows one to use the binary scaling procedure for
the required calculations on extended space-time scales and simplifies the obtained
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expressions [54,59]. Scaling is made by introducing the scaling parameter γ (γ 
 1)
the increase in the value of which corresponds to the examination of more and more
dilute solutions. Obviously, taking into account the encounters of reactants in higher
order solution becomes less essential, and in the limit of infinitely dilute system only
pair encounters of reactants will take place. Thus in the binary theory γ 
 1. Consid-
eration of infinitely dilute reacting systems (scaling-systems) corresponds to the fact
that spatial size of the reaction pair is equal to zero on the scales of distances between
reactants. Realization of such an idea for reactants in solution allows one to develop
the point encounter approximation [27,36] that is the analog of impact approximation
[16].

Fist consider the estimation scaling for T -operators. Note that the T -operator is the
quantity well-defined in the scaling-system, and serves to develop the point encounter
approximation. In the binary approximation it is determined by making allowance
solely for the first two terms of the expansion in the scaling parameter γ → ∞ for
T -operator. Such an account for the kernel of ultimate T -operator T̂Ai B j gives [54,59]

T̃Ai B j (Ai , B j , t |A0i , B0 j , t0) ∼
γ→∞ T̃ p

Ai B j
(Ai , B j , t |A0i , B0 j , t0)+ O(γ−13). (5.5)

Hereinafter the quantities describing the evolution of reactants in scaling-systems are
denoted by tilde “∼”. The quantity T p

Ai B j
(Ai , B j , t |A0i , B0 j , t0) is the point approx-

imation of ultimate T -operator, and has the following scaling estimate [54,59]

T̃ p
Ai B j

(Ai , B j , t |A0i , B0 j , t0) = γ−11(T ps
Ai B j

(Ai , B j , t |A0i , B0 j , t0)

+γ−1χ(Ai , B j , t |A0i , B0 j , t0)). (5.6)

The value T ps
Ai B j

(Ai , B j , t |A0i , B0 j ) is the kernel of the point stationary T -operator
defined by equality

T ps
Ai B j

(Ai , B j , t |A0i , B0 j , t0) = −kδ(Ai − B j )δ(Ai − A0i )δ(B j − B0 j )δ(t − t0).

(5.7)

The δ-shaped spatial variables singularity means that on the scales in question the
encounter of A and B reactants occurs at one point. Such encounters are called
point. δ-shaped time dependence implies that in the first approximation such encoun-
ters proceed instantaneously, and are described by stationary (or Markovian) value
of T -operator, and the finite duration of the encounters is allowed for by the term
χ(Ai , B j , t |A0i , B0 j , t0) which is the next term of the expansion T̂Ai B j in the binary
scaling parameter γ . This term defines the non-Markovian effects in the binary approx-
imation, and is a non-stationary part of the point T -operator. However, we omit its
explicit form because it is of no use in further discussion. For force T -operators we
have [54]
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T̃ 0
Ai A j

(Ai , B j , t |A0i , B0 j , t0) ∼
γ→∞ T̃ 0ps

Ai A j
(Ai , B j , t |A0i , B0 j , t0) ∼

γ→∞ O(γ−13),

T̃ 0
Ai Ck

(Ai , B j , t |A0i , B0 j , t0) ∼
γ→∞ T̃ 0ps

Ai Ck
(Ai , B j , t |A0i , B0 j , t0) ∼

γ→∞ O(γ−13),

T̃ 0
Bi B j

(Ai , B j , t |A0i , B0 j , t0) ∼
γ→∞ T̃ 0ps

Bi B j
(Ai , B j , t |A0i , B0 j , t0) ∼

γ→∞ O(γ−13),

T̃ 0
B j Ck

(Ai , B j , t |A0i , B0 j , t0) ∼
γ→∞ T̃ 0ps

B j Ck
(Ai , B j , t |A0i , B0 j , t0) ∼

γ→∞ O(γ−13).

(5.8)

i.e., the leading term of the expansion of force T -operators is of the higher order in
scaling parameter. This means that correlations arising in the pair AB directly from the
force interaction of reactants are much weaker than correlations caused by chemical
reaction (decay of reactants), and may be neglected in low concentration approxima-
tion.

Consideration of asymptotic estimates (5.5)–(5.8) in Eq. (5.1) and changing to rel-
ative coordinates in the pairs of reactants (according to Eq. (4.8)) yield the desired
equation for two-particle correlation pattern π1,1,0(r, t) in Effective Pair Approxima-
tion. Equations for CPs π2,0,0(r, t) and π0,2,0(r, t) can be derived in a similar way
discussed earlier to give the following set of equations of EPA

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂t − L̂AB − (v̂ + L̂′

AB )+ k([A]t + [B]t )
)
π1,1,0(r, t) = δ(t)π0

1,1,0(r)+ (v̂ + L̂′
AB )[A]t [B]t

−k([A]tπ0,2,0(r, t)+ [B]tπ2,0,0(r, t))(
∂t − L̂AA − L̂′

AA + 2k[B]t
)
π2,0,0(r, t) = δ(t)π0

2,0,0(r)+ L̂′
AA[A]2t − 2k[A]tπ1,1,0(r, t)(

∂t − L̂B B − L̂′
B B + 2k[A]t

)
π0,2,0(r, t) = δ(t)π0

0,2,0(r)+ L̂′
B B [B]2t − 2k[B]tπ1,1,0(r, t)

(5.9)

The operators L̂AB, L̂AA, and L̂B B define the translational motion in the space of rela-
tive coordinates of the pairs AB, AA, and B B, respectively. The operators L̂′

AB, L̂′
AA,

and L̂′
B B are the force interaction operators in appropriate pairs written in relative

coordinates. The operator v̂ is the reaction operator in relative coordinates.
Equation (5.9) are a closed set of EPA equations for two-particle CPs for the reac-

tion under study. To derive EPA kinetic equation, the above equations should be com-
plemented by the first equation of correlation pattern hierarchy (3.15). For spatially
homogeneous systems it has the form

∂t [A]t = δ(t)[A]0 +
∫

dr (v̂ + L̂′
AB)π1,1,0(r, t)+

∫
dr (v̂ + L̂′

AB)[A]t [B]t .

(5.10)

These equations form the basis of the Effective Pair Approximation (EPA). Similar
equations were also proposed in the literature on the basis of euristic approach [55].
The difference from paper [55] is that not only chemical interaction is the source of
correlations but also the force interactions brought about by the encounters of origi-
nally uncorrelated A and B reactants (the second terms in the right-hand side of Eq.
(5.9)). Further evolution of the above interrelated correlation patterns is affected by
several factors: translational migration of reactants (the second and the third terms in
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the left-hand side of Eq. (5.9)), chemical and force interactions in a correlated pair (the
fourth terms in the left-hand side of Eq. (5.9)), the reaction between reactants of the
pair and those in solution (the fifth terms in the left-hand side of Eq. (5.9)), and trans-
formations of correlation patterns of different kinds into each other (the last terms in
the right-hand side of Eq. (5.9)). Generally speaking, such a transformation of CP may
occur both at the immediate approach of reactants (at the times of binary encounters),
and at rather large times when reactants are separated by meso- and macro-distances
but correlation between them is preserved. Thus accumulation of macroscopic cor-
relations of both reacting and non-reacting particles takes place, and this inevitably
affects the evolution of the correlation pattern π1,1,0(r, t) defining, according to Eq.
(5.10), chemical conversion rate.

As in paper [40], set (5.9) of EPA equations is conveniently represented in a matrix
form. By definition, we introduce the quantities

π(r, t) =
⎛
⎝π1,1,0(r, t)
π2,0,0(r, t)
π0,2,0(r, t)

⎞
⎠ , π0(r) =

⎛
⎝
π0

1,1,0(r)
π0

2,0,0(r)
π0

0,2,0(r)

⎞
⎠ , L̂ =

⎛
⎜⎝

L̂AB 0 0
0 L̂AA 0
0 0 L̂B B

⎞
⎟⎠

L̂′ =
⎛
⎜⎝

L̂′
AB 0 0
0 L̂′

AA 0
0 0 L̂′

B B

⎞
⎟⎠ , v̂ = v̂

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ = v̂Π. (5.11)

Note that the projection operator Π may be represented as the product of vectors

Π =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝ 1

0
0

⎞
⎠ (1 0 0) (5.12)

The operator Π itself extracts one-dimensional space from the complete three-dimen-
sional one.

In view of the above definitions, Eq. (5.10) takes the form

∂t [A]t = δ(t)[A]0 +
∫

dr (1 0 0)(v̂ + L̂′
)π(r, t)

+
∫

dr (1 0 0)(v̂ + L̂′
)

⎛
⎝ 1

0
0

⎞
⎠ [A]t [B]t (5.13)

Correspondingly, the matrix form of EPA set (5.9) is
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⎛
⎝∂t − L̂ − (v̂ + L̂′

)+ k

⎛
⎝ [A]t + [B]t [B]t [A]t

2[A]t 2[B]t 0
2[B]t 0 2[A]t

⎞
⎠
⎞
⎠π(r, t)

= δ(t)π0(r)+ (v̂ + L̂′
)

⎛
⎝ [A]t [B]t

[A]2
t

[B]2
t

⎞
⎠ . (5.14)

Owing to the matrix form, the solution of EPA set in the Green function formalism is
rather compact

π(r, t) = ĝe f f

⎡
⎣δ(t)π0(r)+ (v̂ + L̂′

)

⎛
⎝ [A]t [B]t

[A]2
t

[B]2
t

⎞
⎠
⎤
⎦ , (5.15)

where ĝe f f is the effective pair propagator the kernel of which obeys the equation

⎛
⎝∂t − L̂ − (v̂ + L̂′

)+ k

⎛
⎝ [A]t + [B]t [B]t [A]t

2[A]t 2[B]t 0
2[B]t 0 2[A]t

⎞
⎠
⎞
⎠ge f f (r, t |r0, t0)

= δ(r − r0)δ(t − t0)E3 (5.16)

where E3 is a unit matrix of dimensionality 3. Substituting solution (5.15) in Eq.
(5.13) gives EPA kinetic equation

∂t [A]t = δ(t)[A]0 +
∫

dr (1 0 0)t̂
e f f

⎛
⎝ [A]t [B]t

[A]2
t

[B]2
t

⎞
⎠+ J E P A

init (t) (5.17)

Here the T -operator of the effective pair is introduced

t̂
e f f = v̂ + L̂′ + (v̂ + L̂′

)ĝe f f (v̂ + L̂′
). (5.18)

It can be shown that this operator satisfies the closed equation

t̂
e f f = v̂ + L̂′ + (v̂ + L̂′

)ĝ
00
e f f t̂

e f f
, (5.19)

and the relations

(v̂ + L̂′
)ĝe f f = t̂

e f f
ĝ

00
e f f ; ĝe f f (v̂ + L̂′

) = ĝ
00
e f f t̂

e f f
, (5.20)

where ĝ
00
e f f is the effective pair free propagator with the kernel satisfying Eq. (7.13)

in the absence of interaction between reactants (v̂ = 0, L̂′ = 0).
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The source responsible for the presence of initial correlations, in view of relations
(5.20), has the form

J E P A
init (t) =

∫
dr (1 0 0)t̂

e f f
ĝ

00
e f f δ(t)π

0(r) (5.21)

Let us introduce the T -operator of the generalized reaction pair t̂ (by the generalized
reaction pair we mean a combination of pairs AB, AA, and B B)

t̂ = v̂ + L̂′ + (v̂ + L̂′
)ĝ(v̂ + L̂′

). (5.22)

Here we use the generalized reaction pair propagator ĝ with the kernel satisfying the
equation

(
∂t − L̂ − (v̂ + L̂′

)
)

g(r, t |r0, t0) = δ(r − r0)δ(t − t0)E3 (5.23)

The operators in the left-hand side being diagonal, the propagator ĝ is also of diagonal
form

ĝ =
⎛
⎝ ĝAB 0 0

0 ĝ0
AA 0

0 0 ĝ0
B B

⎞
⎠ (5.24)

where the propagators ĝAB, ĝAA, and ĝB B are the propagators of the pairs AB, AA,
and B B (see Eqs. (4.4) and (5.4)) in relative coordinates of the pair. The T -operator
of the generalized reaction pair t̂ (5.22) satisfies the familiar closed equation

t̂ = v̂ + L̂′ + (v̂ + L̂′
)ĝ

00
t̂, (5.25)

where ĝ
00 is the free propagator of the generalized reaction pair which is obviously

matrix in structure (5.24) with matrix elements equal to free propagators of the corre-
sponding pairs. The equation for the kernel of this free propagator follows immediately

from Eq. (5.23) at (v̂ + L̂′
) = 0.

The above quantities serve to form convenient equivalent equations for the effective
pair T -operator [40]

t̂
e f f = t̂ + t̂(ĝ

00
e f f − ĝ

00
)t̂

e f f
. (5.26)

Thus the difference between the deduced relations from the relations derived
neglecting force interactions between reactants and initial correlations [40] is in the

replacement of the reaction operator v̂ by the operator v̂+L̂′
to take force interactions

into account. The major distinction associated with such a consideration leads to the
appearance of additional terms in Eq. (5.17) proportional to concentration products
of chemically non-reacting particles. Making allowance for initial correlations gives
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rise to the inhomogeneous term. However, all these quantities are expressed in terms
of the corresponding matrix elements of the effective T -operator.

6 The Modified Encounter Theory and regular form of binary
kinetic equations

The initial set of EPA equations is rather complicated. To solve it, it should be remem-
bered that CP evolution π1,1,0(r, t) is not determined solely by the evolution of inde-
pendent reacting pair AB (as it was in the situations discussed in the previous sections),
i.e., EPA is not a binary theory.

For some reactions the above approximation is able to describe fluctuation tails of
kinetic dependencies occurring beyond the limits of the binary theory validity [55].
So to obtain the desired solution, one should develop the method for the extraction
of binary evolution from the evolution of three-particle correlation patterns in EPA so
as to derive the non-Markovian binary kinetic equations of the Modified Encounter
Theory (MET) and their subsequent transformation into the Generalized Encounter
Theory (GET), just as it was done in paper [40] in the absence of initial correlations
and force interaction between reactants. However, representation of the equations in
the matrix form reduces the problem to finding the binary solution of Eq. (5.26) which,
according to the reasoning given in [40], takes the form

t̂
e f f � t̂

M ET = t̂ + t̂
ps
(ĝ

00D
ef f − ĝ

00D
)t̂

ps
. (6.1)

Here t̂
ps

denotes the stationary value of the point T -operator (in relative coordinates)
of the generalized reaction pair that has a diagonal form with the matrix elements
(t̂

ps
)11 = t ps

AB , (see Eq. (5.7)), (t̂
ps
)22 = t0ps

AA , (t̂
ps
)33 = t0ps

B B (see Eq. (5.8)). The free
diffusion propagator of the generalized effective pair ĝ

00D
ef f and diffusion propagator

of the generalized reaction pair ĝ
00D appearing in Eq. (6.1) are the approximations

of appropriate free propagators on macroscopic space-time scales, and correspond to
principal order in the binary scaling parameter. Mathematically they are much more
simple than free propagators (motion by stochastic jumps), and their kernels obey
equations of diffusion type.

The kernel of the diffusion propagator of the effective pair satisfies the equation

⎛
⎝∂t −Δr

⎛
⎝ D̄AB 0 0

0 D̄AA 0
0 0 D̄B B

⎞
⎠+ k

⎛
⎝ [A]m

t + [B]m
t [B]m

t [A]m
t

2[A]m
t 2[B]m

t 0
2[B]m

t 0 2[A]m
t

⎞
⎠
⎞
⎠

×g00D
ef f (r, t |r, t0) = δ(r − r0)δ(t − t0)E3.

(6.2)

Here D̄AB, D̄AA and D̄B B are the relative macrodiffusion coefficients, and the Mar-
kovian concentrations [A]m

t and [B]m
t are defined in Eq. (2.4). The equation for the

diffusion propagator ĝ
00D is obtained from Eq. (6.2) by passing to the limit k → 0.

The binary nature of the derived expression (6.1) results from the fact that all quan-
tities in their right-hand sides depend only on the quantities defined solely in terms

123



J Math Chem (2012) 50:1649–1692 1673

of the mean characteristics of independent pairs AB, AA, and B B. Thus the deduced
non-Markovian binary kinetic equation is obtained from EPA kinetic equation (5.17)
using binary approximation (6.1) for the T -operator of the effective pair. Denoting
appropriate matrix elements by lower indices, and abandoning matrix terminology,
we have from Eq. (5.17)

∂t [A]t = δ(t)[A]0 +
∫

dr
(
(t̂

M ET
)11[A]t [B]t + (t̂

M ET
)12[A]2

t + (t̂
M ET

)13[B]2
t

)

+J M ET
init (t), (6.3)

where

J M ET
init (t) =

∫
dr

(
(t̂

M ET
)11 ; (t̂ M ET

)12 ; (t̂ M ET
)13

)
ĝ

00
e f f δ(t)π

0(r). (6.4)

Expanding the matrix form t̂
M ET

, we have from Eq. (6.1)

(t̂
M ET

)11 = t̂AB + t̂ ps
AB

(
(ĝ

00D
ef f )11 − ĝ00D

AB

)
t̂ ps
AB,

(t̂
M ET

)12 = t̂ ps
AB(ĝ

00D
ef f )12 t̂ 0ps

AA ,

(t̂
M ET

)13 = t̂ ps
AB(ĝ

00D
ef f )13 t̂ 0ps

B B .

(6.5)

The derived MET kinetic equation (6.3) depends formally both on the concentra-
tion product [A]t [B]t , and on the products [A]2

t and [B]2
t . Besides, inhomogeneous

source (6.4) depends on the initial correlations not only in the pair AB, but also in the
pairs AA and B B, and this is an essential distinction from IET result. The contribution
of these dependences may be evaluated on two time scales: micro-scale (times of the
order of the encounter time τe of reactants) and macro-scale (times of the order of
the time between the encounters τ f that is the analog of mean free time in gases). On
microscopic time scales estimation is made by the perturbation theory, on macroscopic
ones—by procedure of binary scaling.

First we estimate the obtained expressions on microscopic time scales where the
effective propagator of the generalized pair coincides with the propagator of the gen-
eralized pair, i.e.,

ĝ
00
e f f →

t∼τe
ĝ

00 =
⎛
⎝ ĝ00

AB 0 0
0 ĝ00

AA 0
0 0 ĝ00

B B

⎞
⎠ . (6.6)

So at the times of the order of the encounter time

(t̂
M ET

)11 ∼
t∼τe

t̂AB,

(t̂
M ET

)12 ∼
t∼τe

0,

(t̂
M ET

)13 ∼
t∼τe

0.

(6.7)
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From this it immediately follows that on microscopic times MET kinetic equation (6.3)
coincides with IET kinetic Eq. (4.9), i.e., MET memory function can be introduced

ΣM ET
0 (t |t0) ∼

t∼τe
Σe

0 (t − t0) , (6.8)

Under the assumption of a microscopic character of initial correlations in the pairs
AB, AA, and B B, the inhomogeneous source differs from zero only at small times.
Thus, in view of estimates (6.6), (6.7), and definition (6.4), we conclude that the
following estimate is valid for the source of MET initial correlations

J M ET
init (t) ∼

t∼τe
J I ET

init (t). (6.9)

On macroscopic time scales estimation of expressions (6.5) is made by binary
scaling procedure to give (see “Appendix B”)

(ˆ̃t M ET )11 ∼
γ→∞

ˆ̃t p
AB + γ−9 t̂ ps

AB

(
(ĝ

00D
ef f )11 − ĝ00D

AB

)
t̂ ps
AB + O(γ−10),

(ˆ̃t M ET )12 ∼
γ→∞ O(γ−10),

(ˆ̃t M ET )13 ∼
γ→∞ O(γ−10),

(6.10)

where by analogy with estimation (5.6) the scaling of the kernel of point T -operator
ˆ̃t p
AB is determined by the first two terms of the expansion of t̂ AB in the binary scaling

parameter γ . However, taking into consideration just the relative motion of reactants in
the pair results in that scaling estimations of T -operators in relative coordinates of the
pair and in laboratory system of coordinates (5.6) differ by the factor γ 3 responsible
for the pair center motion [59]

t̃ p
AB(r, t |r0, t0) = γ−8

(
t ps
AB(r, t |r0, t0)+ γ−1χ ′(r, t |r0, t0)

)
. (6.11)

Stationary part of T -operator t̂ ps
AB by analogy with expression (5.7) has a δ-shaped

singularity in space-time variables

t ps
AB(r, t |r0, t0) = −kδ(r)δ(r0)δ(t − t0). (6.12)

The quantity χ ′(r, t |r0, t0) in (6.11) responsible for non-Markovian effects is a non-
stationary part of point T -operator in relative coordinates of the pair of reactants,
and does not coincide with the non-Markovian part of point T -operator in laboratory
system of coordinates (5.6).

From Eqs. (6.10) and (6.11) it evidently follows that consideration of matrix ele-

ments (t̂
M ET

)12 and (t̂
M ET

)13 on macroscopic time scales falls beyond the limits of
the binary description accuracy, and they should be neglected. The subsequent scaling
of inhomogeneous source J M ET

init (t) (6.4) in view of microscopic character of initial
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correlations π(r, t) yields (see “Appendix B”)

J̃ M ET
init (t) ∼

γ→∞ O(γ−6). (6.13)

In the binary description MET kinetic equation (6.3) is valid with allowance for the
first two leading terms of the expansion in binary scaling parameter γ . Such an expan-
sion gives the terms proportional to γ−4 and γ−5 (see “Appendix B”). So taking
into consideration the inhomogeneous source (6.13) responsible for the presence of
initial microscopic correlations on macroscopic scales is beyond the limits of binary
description.

Thus MET kinetic equation (6.3) takes the following form over the entire time range
of binary description

∂t [A]t = δ(t)[A]0 +
∫

dr (t̂
M ET

)11[A]t [B]t + J M ET
init (t), (6.14)

where MET source is defined by analogy with the expression for IET source (4.14)

J M ET
init (t) =

∫
dr (t̂

M ET
)11ĝ00

ABδ(t)π
0
1,1,0(r). (6.15)

Integrating Eq. (6.14) over spatial coordinates and separating out the explicit time
dependence in the kernel of this kinetic equation, we get

∂t [A]t = δ(t)[A]0 −
t∫

−0

dt0Σ
M ET
0 (t |t0)[A]t0 [B]t0 + J M ET

init (t), (6.16)

where the equation kernel (MET memory function) is the averaged MET T -operator

ΣM ET
0 (t |t0) = −

∫
dr (t M ET )11(r, t |r0, t0)dr0. (6.17)

As in paper [44] or in the Integral Encounter Theory considered in Sect. 4, the inhomo-
geneous source determined by initial microscopic correlations in MET kinetic equation
(6.16), in view of estimates (6.8) and (6.9), may be entered into the memory function
taking account of the initial correlations in the pair. This easily gives the homogeneous
integro-differential MET equation

∂t [A]t = δ(t)[A]0 −
t∫

−0

dt0Σ
M ET (t |t0)[A]t0 [B]t0 , (6.18)

where

ΣM ET (t |t0) = −∂t

∫
dr (t̂

M ET
)11ĝ00

ABδ(t)p
T (r). (6.19)
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So the difference between the deduced kinetic equation and the corresponding equa-
tion from paper [40] is just in the redefinition of the kernel of this integro-differential
equation with allowance for force interaction and initial correlation in the reacting
pair AB. In full agreement with these results [40] and results in Ref. [44], using the
binary solution for T -operator (6.5) and definitions (4.18) and (4.19) we have from
Eq. (6.19)

ΣM ET (t |t0) = Σe(t |t0)− k2(g00D
ef f (0, t |0, t0)− g00D

AB (0, t |0, t0)). (6.20)

In the derivation of Eq. (6.20) we use the fact, that the information of microscopic cor-
relations is lost on macro scales. Thus the substitution of the second term (responsible

for macroscopic correlations) of (t̂
M ET

)11 (6.5) in Eq. (6.19) was performed using
the approximation pT (r) � 1(r).

Values g00D
ef f (r, t |r0, t0) and g00D

AB (r, t |r0, t0) appearing in Eq. (6.20) are by defini-
tions

g00D
ef f (r, t |r0, t0) ≡ (g00D

ef f )11(r, t |r0, t0) ;
g00D

AB (r, t |r0, t0) ≡ (g00D)11(r, t |r0, t0). (6.21)

So, as follows from Eq. (6.20), to find the memory function of MET Eq. (6.18), it is
sufficient to know the memory function Σe(t |t0) obtained in the development of IET
(see Sect. 4), the matrix element of the free propagator of the effective pair that satisfies
Eq. (6.2), and free diffusion propagator of the reaction pair AB. The expression for
the latter is available in the literature

g00D
AB (0, t |0, t0) = θ(t − t0)

(4π D̄AB(t − t0))3/2
. (6.22)

Further, to bring MET kinetic equation (6.18) to the differential form, rewrite its
kernel (6.20) in an identical form

ΣM ET (t |t0) ≡ Σe(t |t0) exp

⎛
⎝−k

t∫

t0

dτ([A]m
τ + [B]m

τ )

⎞
⎠+Λ(t |t0). (6.23)

Here we introduce the function Λ(t |t0) which is responsible for macroscopic cor-
relations between reactants encounters. This function can be simplified using point
approximation for IET memory function Σe(t |t0) [39]

Σe(t |t0) � k(t − t0)+ k2

4(π D̄AB)3/2
∂t−t0

θ(t − t0)√
t − t0

. (6.24)

Thus, in view of Eqs. (6.20), (6.22), (6.23), and (6.24), the expression for Λ(t |t0) is
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Λ(t |t0) = −k2

⎛
⎝g00D

ef f (0, t |0, t0)− θ(t − t0)

(4π D̄AB(t − t0))3/2
exp

⎛
⎝−k

t∫

t0

dτ([A]m
τ + [B]m

τ )

⎞
⎠
⎞
⎠ .

(6.25)

It formally coincides with the form of similar function Λ(t |t0) derived in paper Ref.
[40], where the force interaction between reactants was ignored. Making allowance
for the force interaction led just to redefinition of the Markovian rate constant k in
accordance with Eq. (4.20). Such a modification of the obtained expression reducing
only to redefinition of macroscopic parameters of the pair and preserving diffusion
motion of reactants in the point approximation confirms a macroscopic nature of the
function Λ(t |t0).

Using the time shift rule [40,44]

[A]t ⇒ exp

⎛
⎝−k

t∫

t0

dτ [B]m
τ

⎞
⎠[A]t0 ; [B]t ⇒ exp

⎛
⎝−k

t∫

t0

dτ [A]m
τ

⎞
⎠[B]t0 (6.26)

we obtain a Regular Form of non-Markovian binary equations of the Generalized
Encounter Theory (GET) from Eq. (6.18) in view of Eq. (6.23)

∂t [A]t = δ(t)[A]0 − K (t)[A]t [B]t + J (t), (6.27)

where the inhomogeneous source is of the form

J (t) = −
t∫

−0

dt0Λ(t |t0)[A]m
t0 [B]m

t0 . (6.28)

GET kinetic equation (6.27) and kinetic coefficients (K (t) and J (t)) appearing in it
formally coincide with coefficients obtained neglecting the force interaction between
reactants [40]. Modification of these equations reduces just to redefinition of rate
constant with allowance for the force interaction in the reacting pair.

Written on ordinary time interval 0 ≤ t < ∞ (not on the extended one) in the form

d[A]t

dt
= −K (t){[A]t [B]t +Πmacro(t)}, (6.29)

with initial conditions [A]t=0 = [A]0 and [B]t=0 = [B]0. Equation (6.29) shows the
presence of macroscopic correlations of A and B reactants which are in the process
of free random walks between the encounters, just as in the reaction A + B → C
ignoring force interactions and initial correlations between reactants [40], or in the
reaction A + A → C of identical reactants [44]. Such correlations are described by
the correlation pattern
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Πmacro(t) = − J (t)

k
. (6.30)

Note that when transforming the source in Eq. (6.27) into the correlation pattern in Eq.
(6.29), we put K (t) � k as in [40,44] which is possible in the limits of the required
accuracy of the binary description.

Thus it is shown that in the general case taking consistent account of force interac-
tion and initial microscopic correlations leads just to redefinition of the non-Markov-
ian constant K (t) (defined only by the evolution of the reacting pair AB) that serves
to express all quantities appearing in the derived kinetic equations. So in the case
described above the reaction kinetics investigation pursued in terms of rate constants
is identical to that made in paper [40]. To make presentation more complete, let us
calculate the time behaviour of correlations between the encounters of reactants and
the reaction kinetics. We give brief survey of calculations from paper Ref. [40].

7 Time behaviour of the correlations between reactant encounters,
and reaction kinetics

As follows from Eqs. (6.30), (6.28), and (6.25), to calculate the correlator between
the encounters of reactants, it is necessary to calculate free diffusion propagator of the
effective pair. Solving Eq. (6.2) it corresponds to, in the general case, will present dif-
ficulties. However, we restrict ourselves to the case of the equality of macrodiffusion
coefficients of the relative motion of reactants in all pairs, D̄AB = D̄AA = D̄B B ≡ D̄.
Note that, generally speaking, we do not assume that the relative motion in the pairs
on microscopic level is of the diffusion character. Under the assumptions made, the
diffusion motion operator has the form

L̂D = D̄E3Δr, (7.1)

i.e., it is proportional to the unit matrix E3. So it commutes with reactant concentration
matrix in Eq. (6.2), and the free diffusion propagator kernel of the effective pair is

g00D
ef f (r, t |r0, t0) = g00D

AB (r, t |r0, t0)H (t |t0), (7.2)

where g00D
AB (r, t |r0, t0) = g00D

AA (r, t |r0, t0) = g00D
B B (r, t |r0, t0) is the diffusion approx-

imation of the propagator kernel of the relative free motion in any of the pairs (6.22).
The matrix H (t |t0) appearing in Eq. (7.2) is the solution of the equation

⎛
⎝∂t + k

⎛
⎝ [A]m

t + [B]m
t [B]m

t [A]m
t

2[A]m
t 2[B]m

t 0
2[B]m

t 0 2[A]m
t

⎞
⎠
⎞
⎠H (t |t0) = δ(t − t0)E3. (7.3)

Its solution is obtained in Ref. [40] by projection operator method. This solution and
definitions in Eq. (6.21) give the expression for the effective pair diffusion propagator
kernel
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g00D
ef f (r, t |r0, t0) = g00D

AB (r, t |r0, t0)(H )11(t |t0), (7.4)

where the matrix element (H )11(t |t0) is [40]

(H )11(t |t0)=1

2
+1

2
e
−2k

t∫
t0

dτ ([A]m
τ +[B]m

τ )− (Δn · k)2

2

( t∫

t0

dt1 e
−k

t∫
t1

dτ ([A]m
τ +[B]m

τ )
)2

,

(7.5)

where Δn = [B]t − [A]t = [B]0 − [A]0. Thus, substituting expression (7.5) in Eq.
(6.25) in view of Eqs. (6.22), (6.28) and (6.30) we have

Πmacro(t) = − k

8(π D̄)3/2

t∫

−0

dt0
(t − t0)3/2

{
(H )11(t |t0)− e

−k
t∫

t0

dτ ([A]m
τ +[B]m

τ )
}
[A]mt0 [B]mt0 .

(7.6)

As is shown in Ref. [40], the correlator value is negative (J (t) is positive) at all
times at t > 0. This means that taking account of binary encounter correlations in the
reaction system under study results in the decrease in the reaction rate. Since A and
B species of reactants participate in the reaction on equal terms, the greatest effect
of such correlations is to be observed in the case where the initial concentrations of
reactants coincide (Δn = 0). Then Eq. (2.4) for the Markovian kinetics are simplified

[A]m
t = [B]m

t = [A]0

1 + tk[A]0
. (7.7)

So the integral in Eq. (7.6) is explicitly calculated, and the analytical expression may
be obtained for the correlator

Πmacro(t) = − ε[A]2
0

12
√

2(1 + k[A]0t)4

[
9arctanh

(√ k[A]0t

1 + k[A]0t

)
(1 + k[A]0t)3/2

+3(k[A]0t)5/2 − 4(k[A]0t)3/2 − 9
√

k[A]0t

] ,(7.8)

where a small parameter is introduced

ε = k3/2√[A]0

(2π D̄)3/2
(7.9)

Its value is of the order of a square root of the density parameter.
It follows from the Markovian kinetics (7.7) that its characteristic decay time is

τ f = (k[A]0)
−1. This time can be identified with the mean time between sequential

encounters of reactants (it is the analog of a free pass time in the gas phase reactions).
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Fig. 1 Time behavior of the dimensionless function Pmacro(t/τ f )

The times of the order of τ f have a macroscopic scale. The function Pmacro(t) =
J (t) ∗ 12

√
2/(εk[A]2

0) = −Πmacro(t) ∗ 12
√

2/(ε[A]2
0) depends on dimensionless

argument t/τ f . Its behavior is shown in Fig. 1. As is seen, accumulation of macro-
scopic correlations in the reservoir of free walks of reactants due to their encounters
occurs at characteristic mesotimes: 0.8τ f , while their subsequent decay because of
the encounters takes place at characteristic macrotimes: several times τ f .

Now compare the kinetics obtained in the Encounter Theory (ET) and that derived
in the Generalized Encounter Theory (GET) for the case of equal initial concentrations
of reactants (Δn = 0).

To solve the kinetic equation (2.1), we must know the non-Markovian rate constant
K (t) which, generally speaking, depends on the form of initial microscopic correla-
tions, the structure of reactants, and their mobility. Their specific features are most
pronounced at the intermediate stage observed at the times of the order of the encoun-
ter time. At these times the Encounter Theory and the Generalized Encounter Theory
describe the reaction in one and the same way. So consideration of the kinetics at
these times is of no interest to us. We exclude the intermediate stage from the consid-
eration using the point encounter approximation for the non-Markovian rate constant
according to Eqs. (4.19) and (6.24)

K (t) = k + k2

4(π D̄)3/2
1√
t
. (7.10)

The kinetic equation (2.1) may be solved by the perturbation theory method taking
into account that the non-Markovian (the second) term in Eq. (7.10) is small as com-
pared to the Markovian (the first) one. As a result, the non-Markovian kinetics in ET
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is represented as a sum of two terms: Markovian and non-Markovian

[A]ET
t = [A]0

1 + tk[A]0
− ε

[A]0
√

2tk[A]0

(1 + tk[A]0)2
. (7.11)

The first (Markovian) term coincides with kinetics (7.7), and is the leading term in the
scaling parameter. The second term describes the non-Markovian effect in the point
encounter approximation. The obtained kinetics depends on a single dimensionless
time parameter t/τ f , i.e., the encounter time is taken equal to zero.

Calculation of the kinetics in GET with due account of the encounter correlations
is made on the basis of Eq. (6.27) by analogy with ET kinetics calculation. As a result,
the non-Markovian kinetics of GET is

[A]G ET
t = [A]0

1 + tk[A]0

−ε [A]0
√

2tk[A]0

(1 + tk[A]0)2
+ 1

(1 + tk[A]0)2

t∫

0

dt0 J (t0)(1 + t0k[A]0)
2.

(7.12)

The first two terms coincide with the Encounter Theory kinetics (7.11). The third
term is non-Markovian, and is determined by taking into consideration the encounter
correlation source. Its time dependence is quite similar to the behavior of the non-
Markovian part of kinetics (7.11): it increases from zero with time, and decreases at
large times with the characteristic time τ f .

Figure 2 shows the time behavior of the non-Markovian part of ET and GET kinetics
in relative units (the relative deviation of the non-Markovian theory from the Markov-
ian one) at the parameter ε = 0.1 depending on dimensionless time τ = t/τ f

ΔET (τ ) = [A]ET
t − [A]m

t

[A]m
t

; ΔG ET (τ ) = [A]G ET
t − [A]m

t

[A]m
t

. (7.13)

It is noteworthy that the non-Markovian part of the GET kinetics changes sign. As for
ET kinetics, it does not exhibit this property.

Figure 3 shows the deviation of the ratio between ET and GET kinetics non-Mar-
kovian parts from unity

δET (τ ) = 1 − [A]G ET
t − [A]m

t

[A]ET
t − [A]m

t
. (7.14)

Inaccuracy of the Encounter Theory in calculations of the non-Markovian part of the
kinetics increases almost linearly. Thus in the reaction in question the Encounter The-
ory cannot even qualitatively provide adequate description of complete non-Markovian
kinetics.

123



1682 J Math Chem (2012) 50:1649–1692

Fig. 2 Time behavior of relative deviation of the non-Markovian kinetics from the Markovian one at the
parameter ε = 0.1 depending on dimensionless time τ = t/τ f : ΔG ET (t/τ f ) (curve 1) and ΔET (t/τ f )

(curve 2)

Fig. 3 Time behavior of the deviation of the ratio between ET and GET non-Markovian parts from unity
δET (t/τ f ) at the parameter ε = 0.1

8 Summary

The many-particle method for the derivation of non-Markovian binary kinetic equa-
tions available in the literature can be used to theoretically treat the applicability of
the Encounter Theory conceptions in describing physicochemical processes in liquid
dilute solutions. Such a consideration has been made by the authors in the previous
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papers [40,44] for widely occurring diffusion assisted irreversible bulk reactions A +
A → C and A + B → C (for example, radical reaction). It has been shown that in the
general case pair encounters of reactants are dependent. This results in the inhomoge-
neous source responsible for the accumulation of macroscopic correlations between
pair encounters, in non-Markovian binary kinetic equation written as a rate equation.
However, in the examination of the reaction A + B → C the force interaction of
reactants and initial correlations between them were neglected. That is why the goal
of the present contribution was to take consistent account of the force interaction and
initial correlations in this reaction and to study their influence on accumulation of
macroscopic correlations found earlier.

In the context of the Encounter Theory based on the conception of independent pair
encounters the force interaction is considered by including it solely in the reacting pair.
The effects related to the force interaction of reactants of this pair with other particles
are not important, because they are determined by three-particle interaction not taken
into account in the theory. From this standpoint, the given effect could influence the
reaction rate in the framework of the many-particle approach (MET and GET) that
allowed for three-particle correlations. As is shown, the effect in question is actually
taken into account by our theory (in Effective Pair Approximation). However, binary
scaling has shown that it is beyond the limits of binary description accuracy, and thus
is insignificant at small density parameter. Such an effect is to manifest itself with
increasing concentration, as is shown by numerical calculations [20,46–48]. Making
allowance for initial correlations in full agreement with general kinetic theory gave
rise to the inhomogeneous source in the kinetic equation vanishing with time.

Such a consideration is demonstrated that in the presence of the forth interactions
in the reaction system considered it is necessary just to refine usual kinetic charac-
teristics (kinetic equations kernels, reaction rate constants) and the parameters in the
inhomogeneous source of macroscopic correlations between successive encounters,
with general kinetics of accumulation of macroscopic correlations being preserved,
and therefore the reaction kinetics, considered in [40].

Appendix A: Missing equations for two- and three-particle cps

Equations for the main two-particle patterns π1,1,0(A1, B1, t), π2,0,0(A1, A2, t), and
π1,0,1(A1,C1, t) in Eq. (3.18) are as follows

(
∂t − L̂ A1 − L̂ B1 − L̂ ′

A1 B1
− V̂ (1,1)

)
π1,1,0(A1, B1, t)

= δ(t)π0
1,1,0(A1, B1)+

(
L̂ ′

A1 B1
+ V̂ (1,1)

)
n A(A1, t)nB (B1, t)

+ ∫
d A2

(
L̂ ′

A2 B1
+ V̂ (2,1)

) [
π2,1,0(A1, A2, B1, t)+ n A(A2, t)π1,1,0(A1, B1, t)+ nB (B1, t)π2,0,0(A1, A2, t)

]
+ ∫

d A2 L̂ ′
A1 A2

[
π2,1,0(A1, A2, B1, t)+ n A(A1, t)π1,1,0(A2, B1, t)+ n A(A2, t)π1,1,0(A1, B1, t)

]
+ ∫

d B2

(
L̂ ′

A1 B2
+ V̂ (1,2)

) [
π1,2,0(A1, B1, B2, t)+ n A(A1, t)π0,2,0(B1, B2, t)+ nB (B2, t)π1,1,0(A1, B1, t)

]
+ ∫

d B2 L̂ ′
B1 B2

[
π1,2,0(A1, B1, B2, t)+ nB (B1, t)π1,1,0(A1, B2, t)+ nB (B2, t)π1,1,0(A1, B1, t)

]
+ ∫

dC1 L̂ ′
A1C1

[
π1,1,1(A1, B1,C1, t)+ n A(A1, t)π0,1,1(B1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]
+ ∫

dC1 L̂ ′
B1C1

[
π1,1,1(A1, B1,C1, t)+ nB (B1, t)π1,0,1(A1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]
,

(A.1)
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and
(
∂t − L̂ A1 − L̂ A2 − L̂ ′

A1 A2

)
π2,0,0(A1, A2, t)

= δ(t)π0
2,0,0(A1, A2)+ L̂ ′

A1 A2
n A(A1, t)n A(A2, t)

+ ∫
d B1

(
L̂ ′

A1 B1
+ V̂ (1,1)

) [
π2,1,0(A1, A2, B1, t)+ nB (B1, t)π2,0,0(A1, A2, t)+ n A(A1, t)π1,1,0(A2, B1, t)

]
+ ∫

d B1

(
L̂ ′

A2 B1
+ V̂ (2,1)

) [
π2,1,0(A1, A2, B1, t)+ nB (B1, t)π2,0,0(A1, A2, t)+ n A(A2, t)π1,1,0(A1, B1, t)

]
+ ∫

d A3 L̂ ′
A1 A3

[
π3,0,0(A1, A2, A3, t)+ n A(A1, t)π2,0,0(A2, A3, t)+ n A(A3, t)π2,0,0(A1, A2, t)

]
+ ∫

d A3 L̂ ′
A2 A3

[
π3,0,0(A1, A2, A3, t)+ n A(A2, t)π2,0,0(A1, A3, t)+ n A(A3, t)π2,0,0(A1, A2, t)

]
+ ∫

dC1 L̂ ′
A1C1

[
π2,0,1(A1, A2,C1, t)+ n A(A1, t)π1,0,1(A2,C1, t)+ nC (C1, t)π2,0,0(A1, A2, t)

]
+ ∫

dC1 L̂ ′
A2C1

[
π2,0,1(A1, A2,C1, t)+ n A(A2, t)π1,0,1(A2,C1, t)+ nC (C1, t)π2,0,0(A1, A2, t)

]
, (A.2)

and
(
∂t − L̂ A1 − L̂C1 − L̂ ′

A1C1

)
π1,0,1(A1,C1, t)

= δ(t)π0
1,0,1(A1,C1)+ L̂ ′

A1C1
n A(A1, t)nC (C1, t)

+ ∫
d B1

(
L̂ ′

A1 B1
+ V̂ (1,1)

) [
π1,1,1(A1, B1,C1)+ n A(A1, t)π0,1,1(B1,C1)+ nB (B1, t)π1,0,1(A1,C1)

]
+ ∫

d B1 L̂ ′
B1C1

[
π1,1,1(A1, B1,C1, t)+ nB (B1, t)π1,0,1(A1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]
+ ∫

d A2 L̂ ′
A2C1

[
π2,0,1(A1, A2,C1, t)+ n A(A2, t)π1,0,1(A1,C1, t)+ nC (C1, t)π2,0,0(A1, A2, t)

]
+ ∫

d A2 L̂ ′
A1 A2

[
π2,0,1(A1, A2,C1, t)+ n A(A1, t)π1,0,1(A2,C1, t)+ n A(A2, t)π1,0,1(A1,C1, t)

]
+ ∫

dC2 L̂ ′
A1C2

[
π1,0,2(A1,C1,C2, t)+ n A(A1, t)π0,0,2(C1,C2, t)+ nC (C2, t)π1,0,1(A1,C1, t)

]
+ ∫

dC2 L̂ ′
C1C2

[
π1,0,2(A1,C1,C2, t)+ nC (C1, t)π1,0,1(A1,C2, t)+ nC (C2, t)π1,0,1(A1,C1, t)

]
+ R̂(1|2,1) [π2,1,0(A1, A2, B1, t)+ n A(A2, t)π1,1,0(A1, B1, t)+ nB (B1, t)π2,0,0(A1, A2, t)

]
. (A.3)

The equations for the patterns π0,2,0(B1, B2, t) and π0,1,1(B1,C1, t) that are in Eq.
(A.1) may be derived from Eqs. (A.2) and (A.3) by symmetric substitution of A for
B, and, vice versa,
(
∂t − L̂ B1 − L̂ B2 − L̂ ′

B1 B2

)
π0,2,0(B1, B2, t)

= δ(t)π0
0,2,0(B1, B2)+ L̂ ′

B1 B2
nB (B1, t)nB (B2, t)

+ ∫
d A1

(
L̂ ′

A1 B1
+ V̂ (1,1)

) [
π1,2,0(A1, B1, B2, t)+ nB (B1, t)π0,2,0(B1, B2, t)+ nB (B1, t)π1,1,0(A1, B2, t)

]
+ ∫

d A1

(
L̂ ′

A1 B2
+ V̂ (1,2)

) [
π1,2,0(A1, B1, B2, t)+ nB (B1, t)π0,2,0(B1, B2, t)+ nB (B2, t)π1,1,0(A1, B1, t)

]
+ ∫

d B3 L̂ ′
B1 B3

[
π0,3,0(B1, B2, B3, t)+ nB (B1, t)π0,2,0(B2, B3, t)+ nB (B3, t)π0,2,0(B1, B2, t)

]
+ ∫

d B3 L̂ ′
B2 B3

[
π0,3,0(B1, B2, B3, t)+ nB (B2, t)π0,2,0(B1, B3, t)+ nB (B3, t)π0,2,0(B1, B2, t)

]
+ ∫

dC1 L̂ ′
B1C1

[
π0,2,1(B1, B2,C1, t)+ nB (B1, t)π0,1,1(B2,C1, t)+ nC (C1, t)π0,2,0(B1, B2, t)

]
+ ∫

dC1 L̂ ′
B2C1

[
π0,2,1(B1, B2,C1, t)+ nB (B2, t)π0,1,1(B1,C1, t)+ nC (C1, t)π0,2,0(B1, B2, t)

]
. (A.4)

(
∂t − L̂ B1 − L̂C1 − L̂ ′

B1C1

)
π0,1,1(B1,C1, t)

= δ(t)π0
0,1,1(B1,C1)+ L̂ ′

B1C1
nB (B1, t)nC (C1, t)

+ ∫
d A1

(
L̂ ′

A1 B1
+ V̂ (1,1)

) [
π1,1,1(A1, B1,C1, t)+ nB (B1, t)π1,0,1(A1,C1, t)+ n A(A1, t)π0,1,1(B1,C1, t)

]
+ ∫

d A1 L̂ ′
A1C1

[
π1,1,1(A1, B1,C1, t)+ n A(A1, t)π0,1,1(B1,C1, t)+ nC (C1, t)π1,1,0(A1, B1, t)

]
+ ∫

d B2 L̂ ′
B2C1

[
π0,2,1(B1, B2,C1, t)+ nB (B2, t)π0,1,1(B1,C1, t)+ nC (C1, t)π0,2,0(B1, B2, t)

]
+ ∫

d B2 L̂ ′
B1 B2

[
π0,2,1(B1, B2,C1, t)+ nB (B1, t)π0,1,1(B2,C1, t)+ nB (B2, t)π0,1,1(B1,C1, t)

]
+ ∫

dC2 L̂ ′
B1C2

[
π0,1,2(B1,C1,C2, t)+ nB (B1, t)π0,0,2(C1,C2, t)+ nC (C2, t)π0,1,1(B1,C1, t)

]
+ ∫

dC2 L̂ ′
C1C2

[
π0,1,2(B1,C1,C2, t)+ nC (C1, t)π0,1,1(B1,C2, t)+ nC (C2, t)π0,1,1(B1,C1, t)

]
+ R̂(1|2,1) [π1,2,0(A1, B1, B2, t)+ nB (B2, t)π1,1,0(A1, B1, t)+ n A(A1, t)π0,2,0(B1, B2, t)

]
. (A.5)
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Equation for π0,0,2(C1,C2, t) is as follows

(
∂t − L̂C1 − L̂C2 − L̂ ′

C1C2

)
π0,0,2(C1,C2, t)

= δ(t)π0
0,0,2(C1,C2)+ L̂ ′

C1C2
nC (C1, t)nC (C2, t)

+ ∫
d B1 L̂ ′

B1C1

[
π0,1,2(B1,C1,C2, t)+ nB (B1, t)π0,0,2(C1,C2, t)+ nC (C1, t)π0,1,1(B1,C2, t)

]
+ ∫

d B1 L̂ ′
B1C2

[
π0,1,2(B1,C1,C2, t)+ nB (B1, t)π0,0,2(C1,C2, t)+ nC (C2, t)π0,1,1(B1,C1, t)

]
+ ∫

dC3 L̂ ′
C2C3

[
π0,0,3(C1,C2,C3, t)+ nC (C3, t)π0,0,2(C1,C2, t)+ nC (C2, t)π0,0,2(C1,C3, t)

]
+ ∫

dC3 L̂ ′
C1C3

[
π0,0,3(C1,C2,C3, t)+ nC (C3, t)π0,0,2(C1,C2, t)+ nC (C1, t)π0,0,2(C2,C3, t)

]
+ ∫

d A1 L̂ ′
A1C1

[
π1,0,2(A1,C1,C2, t)+ n A(A1, t)π0,0,2(C1,C2, t)+ nC (C1, t)π1,0,1(A1,C2, t)

]
+ ∫

d A1 L̂ ′
A1C2

[
π1,0,2(A1,C1,C2, t)+ n A(A1, t)π0,0,2(C1,C2, t)+ nC (C2, t)π1,0,1(A1,C1, t)

]
+R̂(1|1,1) [π1,1,1(A1, B1,C1, t)+ n A(A1, t)π0,1,1(B1,C1, t)+ nB (B1, t)π1,0,1(A1,C1, t)

]
+R̂(2|1,1) [π1,1,1(A1, B1,C2, t)+ n A(A1, t)π0,1,1(B1,C2, t)+ nB (B1, t)π1,0,1(A1,C2, t)

]
. (A.6)

Equations for three-particle CPs are presented using the notation L̂αβγ = L̂α + L̂β +
L̂γ + L̂ ′

αβ + L̂ ′
αγ + L̂ ′

βγ , where α, β, and γ denote the reactant

(
∂t − L̂ A1 B1C1 − V̂ (1,1)

)
π1,1,1(A1, B1,C1, t)

= δ(t)π0
1,1,1(A1, B1,C1)+

(
L̂ ′

A1 B1
+L̂ ′

A1C1
+V̂ (1,1)

)
n A(A1, t)π0,1,1(B1,C1, t)

+
(

L̂ ′
A1 B1

+ L̂ ′
B1C1

+ V̂ (1,1)
)

nB(B1, t)π1,0,1(A1,C1, t)

+
(

L̂ ′
A1C1

+ L̂ ′
B1C1

)
nC (C1, t)π1,1,0(A1, B1, t), (A.7)

(
∂t − L̂ A1 A2 B1 − V̂ (1,1) − V̂ (2,1)

)
π2,1,0(A1, A2, B1, t)

= δ(t)π0
2,1,0(A1, A2, B1)+

(
L̂ ′

A1 B1
+L̂ ′

A1 A2
+V̂ (1,1)

)
n A(A1, t)π1,1,0(A2, B1, t)

+
(

L̂ ′
A1 B1

+ L̂ ′
A2 B1

+ V̂ (1,1) + V̂ (2,1)
)

nB(B1, t)π2,0,0(A1, A2, t)

+
(

L̂ ′
A2 B1

+ L̂ ′
A1 A2

+ V̂ (2,1)
)

n A(A2, t)π1,1,0(A1, B1, t), (A.8)

(
∂t − L̂ A1 B1 B2 − V̂ (1,1) − V̂ (1,2)

)
π1,2,0(A1, B1, B2, t)

= δ(t)π0
1,2,0(A1, B1, B2)

+
(

L̂ ′
A1 B1

+ L̂ ′
A1 B2

+ V̂ (1,1) + V̂ (1,2)
)

n A(A1, t)π0,2,0(B1, B2, t)

+
(

L̂ ′
A1 B1

+ L̂ ′
B1 B2

+ V̂ (1,1)
)

nB(B1, t)π1,1,0(A1, B2, t)

+
(

L̂ ′
A1 B1

+ L̂ ′
B1 B2

+ V̂ (1,2)
)

nB(B2, t)π1,1,0(A1, B1, t), (A.9)

(
∂t − L̂ A1C1C2

)
π1,0,2(A1,C1,C2, t)

= δ(t)π0
1,0,2(A1,C1,C2)+

(
L̂ ′

A1C1
+ L̂ ′

A1C2

)
n A(A1, t)π0,0,2(C1,C2, t)

+
(

L̂ ′
A1C1

+ L̂ ′
C1C2

)
nC (C1, t)π1,0,1(A1,C2, t)

+
(

L̂ ′
A1C2

+ L̂ ′
C1C2

)
nC (C2, t)π1,0,1(A1,C1, t), (A.10)
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(
∂t − L̂ A1 A2C1

)
π2,0,1(A1, A2,C1, t)

= δ(t)π0
2,0,1(A1, A2,C1)+

(
L̂ ′

A1C1
+ L̂ ′

A1 A2

)
n A(A1, t)π1,0,1(A2,C1, t)

+
(

L̂ ′
A1C1

+ L̂ ′
A2C1

)
nC (C1, t)π2,0,0(A1, A2, t)

+
(

L̂ ′
A2C1

+ L̂ ′
A1 A2

)
n A(A2, t)π1,0,1(A1,C1, t), (A.11)

(
∂t − L̂ B1C1C2

)
π0,1,2(B1,C1,C2, t)

= δ(t)π0
0,1,2(B1,C1,C2)+

(
L̂ ′

B1C1
+ L̂ ′

B1C2

)
nB(B1, t)π0,0,2(C1,C2, t)

+
(

L̂ ′
B1C1

+ L̂ ′
C1C2

)
nC (C1, t)π0,1,1(B1,C2, t)

+
(

L̂ ′
B1C2

+ L̂ ′
C1C2

)
nC (C2, t)π0,1,1(B1,C1, t), (A.12)

(
∂t − L̂ B1 B2C1

)
π0,2,1(B1, B2,C1, t)

= δ(t)π0
0,2,1(B1, B2,C1)+

(
L̂ ′

B1C1
+ L̂ ′

B1 B2

)
nB(B1, t)π0,1,1(B2,C1, t)

+
(

L̂ ′
B1C1

+ L̂ ′
B2C1

)
nC (C1, t)π0,2,0(B1, B2, t)

+
(

L̂ ′
B2C1

+ L̂ ′
B1 B2

)
nB(B2, t)π0,1,1(B1,C1, t), (A.13)

(
∂t − L̂ A1 A2 A3

)
π3,0,0(A1, A2, A3, t)

= δ(t)π0
3,0,0(A1, A2, A3)+

(
L̂ ′

A1 A2
+ L̂ ′

A1 A3

)
n A(A1, t)π2,0,0(A2, A3, t)

+
(

L̂ ′
A1 A2

+ L̂ ′
A2 A3

)
n A(A2, t)π2,0,0(A1, A3, t)

+
(

L̂ ′
A1 A3

+ L̂ ′
A2 A3

)
n A(A3, t)π2,0,0(A1, A2, t), (A.14)

(
∂t − L̂ B1 B2 B3

)
π0,3,0(B1, B2, B3, t)

= δ(t)π0
0,3,0(B1, B2, B3)+

(
L̂ ′

B1 B2
+ L̂ ′

B1 B3

)
nB(B1, t)π0,2,0(B2, B3, t)

+
(

L̂ ′
B1 B2

+ L̂ ′
B2 B3

)
nB(B2, t)π0,2,0(B1, B3, t)

+
(

L̂ ′
B1 B3

+ L̂ ′
B2 B3

)
nB(B3, t)π0,2,0(B1, B2, t), (A.15)

(
∂t − L̂C1C2C3

)
π0,0,3(C1,C2,C3, t)

= δ(t)π0
0,0,3(C1,C2,C3)+

(
L̂ ′

C1C2
+ L̂ ′

C1C3

)
nC (C1, t)π0,0,2(C2,C3, t)

+
(

L̂ ′
C1C2

+ L̂ ′
C2C3

)
nC (C2, t)π0,0,2(C1,C3, t)

+
(

L̂ ′
C1C3

+ L̂ ′
C2C3

)
nC (C3, t)π0,0,2(C1,C2, t). (A.16)
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Appendix B: Equations for CPs in IET approximation and epa

Derivation of closed equations for correlation patterns evolution calls for the use of
correlation termination procedure. The simplest technique is including only pair corre-
lations into consideration neglecting all three-particle patterns. Such a hierarchy termi-
nation is typical of many-particle collision theory in gases, and corresponds to making
allowance solely for pair diagrams in the derivation of the collision theory mass opera-
tor. In this approximation Eq. (A.1) for the two-particle CP π1,1,0(A1, B1, t) is simpli-
fied to IET Eq. (4.1). Equations for other main two-particle patterns π2,0,0(A1, A2, t)
and π1,0,1(A1,C1, t) in IET approximation are easily derived from Eqs. (A.2) and
(A.3) neglecting all three-particle patterns. They are as follows

(
∂t − L̂ A1 − L̂ A2 − L̂ ′

A1 A2

)
π2,0,0(A1, A2, t)

= δ(t)π0
2,0,0(A1, A2)+ L̂ ′

A1 A2
n A(A1, t)n A(A2, t), (B.1)

and

(
∂t − L̂ A1 − L̂C1 − L̂ ′

A1C1

)
π1,0,1(A1,C1, t)

= δ(t)π0
1,0,1(A1,C1)+ L̂ ′

A1C1
n A(A1, t)nC (C1, t). (B.2)

Another method of hierarchy closure that enables one to include into consideration
all binary terms when dealing with small concentrations of reactants employs termi-
nation of correlations on the level of three-particle ones. In solving the corresponding
Eqs. (A.1), (A.2), and (A.3) the method of extracting pair channels in the analysis
of the evolution of three spatially correlated particles is used [28] which is similar to
the Faddeev method applied in quantum three-body theory [60]. The essence of the
method is that in studying the evolution of three particles account is taken solely of
the situation where only two reactants interact with one another (force interaction or
reaction one), while the third reactant moves freely.

Thus in the approximation (of pair channel account), it is necessary to determine the
contributions from three-particle completely correlated patternsπ2,1,0(A1, A2, B1, t),
π1,2,0(A1, B1, B2, t), and π1,1,1(A1, B1,C1, t) to the collision integral in the calcu-
lation of π1,1,0(A1, B1, t) evolution in Eq. (A.1). For example, consider the pattern
π2,1,0(A1, A2, B1) and the value (V̂ (2,1) + L̂ ′

A2 B1
)π2,1,0(A1, A2, B1, t) appearing in

Eq. (A.1). First of all use the solution of Eq. (A.8) that can be obtained in a common
way by Green function formalism neglecting the influence of initial three-particle
correlations π0

2,1,0(A1, A2, B1) [28]

π2,1,0(A1, A2, B1, t) = Ĝ A1 A2 B1

[(
L̂ ′

A1 B1
+ L̂ ′

A1 A2
+ V̂ (1,1)

)
n A(A1, t)π1,1,0(A2, B1, t)

+
(

L̂ ′
A1 B1

+ L̂ ′
A2 B1

+ V̂ (1,1) + V̂ (2,1)
)

nB (B1, t)π2,0,0(A1, A2, t)

+
(

L̂ ′
A2 B1

+ L̂ ′
A1 A2

+ V̂ (2,1)
)

n A(A2, t)π1,1,0(A1, B1, t)
]
. (B.3)
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Here Ĝ A1 A2 B1 is the three-particle propagator the kernel of which satisfies the equation

(
∂t − L̂ A1 A2 B1 − V̂ (1,1) − V̂ (2,1)

)
G A1 A2 B1(A1, A2, B1, t |A01, A02, B01, t)

= δ(A1 − A01)δ(A2 − A02)δ(B1 − B01)δ(t − t0). (B.4)

Accordingly to the mentioned idea of binary channel extracting we should consider
the situation when two particles interact, and the third one just moves freely. If we
consider the pattern π2,1,0(A1, A2, B1) and the interaction of particles A2 and B1

(which is described by the operators V̂ (2,1) and L̂ ′
A2 B1

), only the terms describing the
interaction of just this pair of particles should be retained in the right-hand of Eq.
(B.3). Moreover, the propagator of three particles Ĝ A1 A2 B1 is also simplified. Its ker-
nel can be represented as the product of the propagator kernel of the interacting pair
Ĝ A2 B1 and the free propagator of the third particle Ĝ0

A1
. Such approximation allows us

to calculate the value
(

V̂ (2,1) + L̂ ′
A2 B1

)
π2,1,0(A1, A2, B1, t) appearing in Eq. (A.1).

Multiplying the Eq. (B.3) on the left by
(

V̂ (2,1) + L̂ ′
A2 B1

)
we have

(
V̂ (2,1) + L̂ ′

A2 B1

)
π2,1,0(A1, A2, B1, t)

�
(

V̂ (2,1) + L̂ ′
A2 B1

)
̂[G A2 B1 G0

A1
]
(

V̂ (2,1) + L̂ ′
A2 B1

)
(
n A(A2, t)π1,1,0(A1, B1, t)+ nB(B1, t)π2,0,0(A1, A2, t)

)
. (B.5)

The kernel of the propagator Ĝ A2 B1 of the pair AB and that of the free motion propaga-
tor Ĝ0

A1
of the particle A are defined by relations (4.4) and (5.2), respectively. Similar

procedure for the quantity L̂ ′
A1 A2

π2,1,0(A1, A2, B1, t) gives the representation for the
three-particle pattern π2,1,0(A1, A2, B1, t)

L̂ ′
A1 A2

π2,1,0(A1, A2, B1, t)

� L̂ ′
A1 A2

̂[G A1 A2 G0
B1

]L̂ ′
A1 A2

(
n A(A1, t)π1,1,0(A2, B1, t)+ n A(A2, t)π1,1,0(A1, B1, t)

)
.

(B.6)

The propagators Ĝ0
A1 A2

and Ĝ0
B1

are defined by relations (4.4) and (5.2) respectively.
Representation for other three-particle evolutions in binary channel approximation
appearing in Eq. (A.1) are derived by analogy. As a result, we have from Eq. (A.1) the
equation for the two-particle pattern π1,1,0(A1, B1, t) (5.1).

Appendix C: Scaling

Transformation of any functionΦ(rA, rB, t) defining the pair in the initial system into
the function Φ̃(rA, rB , t), describing the same pair but in the scaling-system has the
form

Φ̃(rA, rB , t) ≡ Φ(γ rA, γ rB , γ
2t). (C.1)
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This makes it possible to easily scale any expression, and analyze its different contri-
butions on macroscopic space-time scales in powers of the scaling parameter γ .

Before scaling the required matrix elements of the effective pair T -operator (6.5),
note that scaling parameter estimates γ for T -operators (5.5), (5.6), and (5.8) are given
in the laboratory system of coordinates. Estimates for T -operators in relative coordi-
nates differ from them by the factor γ 3 taking account of the pair center motion. In
particular, scaling of the kernels of force T -operators necessary for further calculation
is as follows

t̃ 0
AA(r, t |r0, t0) ∼

γ→∞ t̃ 0ps
AA (r, t |r0, t0) ∼

γ→∞ O(γ−10),

t̃ 0
B B(r, t |r0, t0) ∼

γ→∞ t̃ 0ps
B B (r, t |r0, t0) ∼

γ→∞ O(γ−10).
(C.2)

First let us scale the matrix element (t̂
M ET

)12 defined in (6.5). Expressing the
action of integral operators explicitly in terms of their kernels, and making the scaling
procedure by rule (C.1), we have

( t̃
M ET

)12(r, t |r0, t0) = ker
˜

[
t̂ ps
AB(ĝ

00D
ef f )12 t̂ 0ps

AA

]
(r, t |r0, t0)

≡
∫

t ps
AB(γ r, γ 2t |r1, t1) dr1 dt1 (g

00D
ef f )12(r1, t1|r2, t2) dr2 dt2 t 0ps

AA (r2, t2|γ r0, γ
2t0).

(C.3)

Here notation ker means the kernel of integral operator in square brackets. Performing
the substitution ri → γ ri , ti → γ 2ti , where i = 1, 2, and using the property dri →
γ 3dri we get

( t̃
M ET

)12(r, t |r0, t0) = γ 10ker
[ ˆ̃t ps

AB(
ˆ̃g00D

ef f )12
ˆ̃t 0ps
AA

]
(r, t |r0, t0). (C.4)

The free propagator kernel of the effective pair on macroscopic space-time scales has
the following estimate in the parameter γ [36,59]

g̃00D
ef f (r, t |r0, t0) ∼

γ→∞ γ
−3g00D

ef f (r, t |r0, t0). (C.5)

The action of point operators ˆ̃t ps
AB and ˆ̃t 0ps

AA from the left and from the right on the

propagator ˆ̃g00D
ef f , respectively, means that the motion of reactants described by this

propagator takes place in a restricted area: initial and final points of reactant motion
are at zero. Thus direct substitution of estimate (C.5) in expression (C.4) is not quite
correct, and leads to nonintegrable singularity. For the calculation to be correct, it is
sufficient to make initial and final points differ by a small value. The corresponding
scaling parameter estimate is of the form

g̃00D
ef f (0, t |0 + 0, t0) ∼

γ→∞
γ g00D

ef f (0, t |0 + 0, t0)

γ 3 = γ−2g00D
ef f (0, t |0 + 0, t0). (C.6)
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So in view of relations (6.11), (C.2), and (C.6), from (C.4) we obtain the required

estimate of the matrix element (t̂
M ET

)12 in (6.10). Estimation for the matrix ele-
ment (t̂

M ET
)13 is made by analogy. Note that the second term of the matrix element

(t̂
M ET

)11 is structurally similar to (t̂
M ET

)12. That is why it is scaled in a similar
way. However, the action of point T -operators on the difference between propagators(
(ĝ

00D
ef f )11 − ĝ00D

AB

)
is well-defined, thus the following estimation is valid

(g̃00D
ef f )11(0, t |0, t0)− g̃00D

AB (0, t |0, t0) ∼
γ→∞ γ

−3
(
(g00D

ef f )11(0, t |0, t0)− g00D
AB (0, t |0, t0)

)
.

(C.7)

This gives the required estimate of the matrix element (t̂
M ET

)11 in Eq. (6.10).
To get the scaling estimate for the source J M ET

init (t) (6.4) we take into account that
the initial correlations are of microscale. This means that initial correlations can be
considered only in a limited area and on macroscopic scale are reduced to a point.
Therefore they have δ(r)-shaped character. To scale δ-shaped functions we use the
property

δ(Cx) = δ(x)

C
, (C.8)

where C is constant, x is variable. Generalizing the expression for initial correlations
in pair AB (4.10) to other pairs AA and B B, taking into account Eq. (C.8) and the
property

˜[A]0 ∼ γ−2[A]0 ; ˜[B]0 ∼ γ−2[B]0, (C.9)

we have the following estimate in the parameter γ for the initial correlations

π̃0(r) ∼
γ→∞ γ

−7δ(r). (C.10)

Using the recipe described in obtaining the expression (C.4), we can easily obtain the
following estimate for the source J M ET

init (t) (6.4)

J̃ M ET
init (t) ∼

γ→∞ γ
13
∫

dr
(
(ˆ̃t M ET )11 ; (ˆ̃t M ET )12 ; (ˆ̃t M ET )13

) ˆ̃g00
e f f

˜δ(t)π̃0(r).

(C.11)

Using the property (C.8), Eqs. (6.10), (C.6) and (C.10) in expression (C.11), we get
the desired scaling estimate of the source (6.13).

Let us scale the kinetic equation MET (6.14). Using Eqs. (C.8), (C.9) we get for
the first term in Eq. (6.14)

˜δ(t)[A]0 ∼ γ−4δ(t)[A]0 (C.12)
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For the scaling of the second term in Eq. (6.14) take into account expressions (C.9),
(6.10), (6.11) and (6.12). As a result, taking into account the first two terms in the
parameter γ we get

˜∂t [A]t ∼ γ−4δ(t)[A]0 − γ−4k[A]t [B]t + O(γ−5). (C.13)

Leading order in the parameter γ corresponds to the law of mass action (2.3) (i.e., a
Markovian description). Accounting next order is essential in the construction of non-
Markovian theory. Its form is not explicitly specified here, because it is considered in
detail Sect. 5.
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